RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

USING AB INITIO DATA OF MOLECULAR DYNAMICS TO ANALYZE STRUCTURAL UNITS AND THEIR STABILITY IN BORON-OXYGEN NETWORK OF MELT B2O3–Na2O

PII
10.31857/S0235010623010115-1
DOI
10.31857/S0235010623010115
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
22-38
Abstract
The aim of this work was to develop a computational-theoretical method for a detailed study of the geometry and statistical characteristics of local structural groups of complex liquids such as alkaline borate systems, tending to form a bulk boron-oxygen network. The technique was worked out a melt 30Na2O–70B2O3 as an example at T = 1273 K. Ab initio molecular dynamics was used, implemented in the VASP program code for a supercell consisting of 250 atoms. The ion coordinates obtained at each step were used to obtain statistically significant information about the detailed structure of the melt. Using the original program developed for this purpose, we determined the partial radial distribution functions of the of atoms and analyzed all the closest coordinations found in the model around each type of ions, also the types and number of stable groups, bond lengths and angles in them. In addition, the tetrahedrality criterion for units BO4 and ВB4 were defined. Almost regular triangles (~80% of boron atoms) and tetrahedra (~19% of boron atoms) with a boron ion in the center and oxygen ions at the vertices proved to be the basic structural units. These simple structures form a boron-oxygen network connected by common (bridging) oxygen atoms. This network includes almost all boron atoms. Superstructural units, namely combinations of three or more basic structures have been found. For example, two triangles and one tetrahedron are forming rings of six alternating boron and oxygen atoms. Besides, the existence of rings that are formed from four basic structural units were discovered, but they in contrast to six-atom rings, are not planar formations. The proposed technique allows to obtain almost any details on the structural features of systems of this type, in particular, to answer the important question about the number of bridging and non-bridging oxygen atoms. It turned out that there are approximately 86% of bridging oxygens in studied system. The approach used considers correctly covalent and ionic bonds in liquid systems based on network-forming oxides and modifier-oxides. That will make possible to study the change in local structural characteristics and its dependence on concentration and temperature explaining the behavior of various physico-chemical properties.
Keywords
щелочноборатный расплав первопринципная молекулярная динамика структура ближнего порядка трех- и четырех-координированные атомы бора надструктурные единицы мостиковые и немостиковые атомы кислорода
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
38

References

  1. 1. Krogh-Moe J. // Phys. Chem. Glasses 1969. 6. 2. P. 46–54. https://doi.org/10.1016/0022-3093 (69)90025-8
  2. 2. Yano T., Kunimine N., Shibata S., Yamane M. // J. Non-Crystalline Solids. 2003. 321. P. 147–156. https://doi.org/10.1016/S0022-3093 (03)00159-5
  3. 3. Osipov A.A., Osipova L.M. // GlassPhys. Chem. 2009. 35. P. 121–131. https://doi.org/10.1134/S1087659609020011
  4. 4. Handa K., Kita Y., Kohara S. // J. Physics and Chemistry of Solids. 1999. 60. P. 1465–1471. https://doi.org/10.1016/S0022-3697 (99)00143-2
  5. 5. Fábián M., Sváb E., Proffen T., Veress E. // J. Non-Crystalline Solids 2010. 356. P. 441–446. https://doi.org/10.1016/j.jnoncrysol.2009.12.013
  6. 6. Guillaume F., Charpentier T., Seitsonen A.P., Takada A., Lazzeri M., Cormier L., Calas G., Mauri F. // Phys. Rev. Lett. 2008. 101. 065504. https://doi.org/10.1103/PhysRevLett.101.065504
  7. 7. Бубнова Р.С., Филатов С.К. Высокотемпературная кристаллохимия боратов и боросиликатов. Санкт-Петербург: Наука, 2008.
  8. 8. Kaiura G.H., Toguri J.M. The viscosity and structure of sodium borate melts // Physics and chemistry of glasses // Phys and Chem Glasses. 1976. 17. № 3. P. 62–69.
  9. 9. Shartsis L., Capps W., and Spinner S. Viscosity and electrical resistivity of molten alkali borates // J. Am. Cer. Soc. 1953. 36. № 2. P. 35–43.
  10. 10. Claes P., Coq J.L., Glibert J. // Electrochimica Acta. 1988. 33. P. 347–352. https://doi.org/10.1016/0013-4686 (88)85027-8
  11. 11. Melchakov S.Y., Khokhryakov A.A., Samoilova M.A., Ryabov V.V., Yagodin D.A. // Glass. Phys. Chem. 2022. 48. № 3. P. 174–179. https://doi.org/10.1134/S1087659622030063
  12. 12. Khokhryakov A.A., Melchakov S.Y., Samoilova M. A., Ryabov V. V. // Inorganic materials. 2022. 58. № 5. P. 538–543. https://doi.org/10.1134/S0020168522050053
  13. 13. Cristos-Platon E., Varsamis // Phys. Rev B. 2002. 65. P. 104203-104217. https://doi.org/10.1103/PhysRevB.65.104203
  14. 14. Ohkubo T., Takahiro O., Tsuchida E., Gobet M., Sarou-Kanian V., Bessada C., Yasuhiko I. // J. Phys. Chem. B. 2013. 117. P. 5668–5674. https://doi.org/10.1021/jp312486m
  15. 15. Yuryev A.A., Samoylova M.A. // J. Structural Chemistry. 2020. 61. 5. P. 681–687. https://doi.org/10.1134/S0022476620050029
  16. 16. Xu Q., Kawamura K., Yokokawa T. // J. Non-Cryst. Solids. 1988. 104. P. 261–272. https://doi.org/10.1016/0022-3093 (88)90397-3
  17. 17. Kita Y., Misawa M. Umesaki N., Kirihara T., Fukunaga T., Iida T. ISIJ International. 1993. 33. № 1. P. 188–194. https://doi.org/10.2355/isijinternational.33.188
  18. 18. Umesaki N., Kita Y., Kirihara T., Iida T., Fukunaga T., Misawa M. // J. Non-Crystalline Solids.1994. 177. P. 200–207. https://doi.org/10.1016/0022-3093 (94)90531-2
  19. 19. Pooja S., Pente A.A., Mandar D.S., Chowdhri I.A., Sharma K., Goswami M. Kalsanka T.S., Sadhana M. // J. Phys. Chem. B. 2019. 123. P. 6290–6302. https://doi.org/10.1021/acs.jpcb.9b03026
  20. 20. Kresse G., Furthmuller J. // Phys. Rev. B. American Physical Society. 1996. 54. P. 11 169–11 186. https://doi.org/10.1103/PhysRevB.54.11169
  21. 21. Цымбалист М.М., Юрьев А.А. Свидетельство о государственной регистрации программы для ЭВМ № 2020618833 программа для ЭВМ “StatXYZ”.
  22. 22. Errington J.R., Debenedetti P.G. // Nature. 2001. 409. P. 318–321. https://doi.org/10.1038/35053024
  23. 23. Kumar P., Buldyrev S.V., Stanley H. E. PNAS. 2009. 106. № 52. P. 22130–22134. www.pnas.org/cgi/doi/10.1073/pnas.0911094106
  24. 24. Alderman O.L.G. // J. Phys. Chem. C. 2015. https://doi.org/10.1021/acs.jpcc.5b10277
  25. 25. Majérus O., Cormier L., Calas G., Beuneu B. // Phys. Rev. B. 2003. 67. P. 024210–024217. https://doi.org/10.1103/PhysRevB.67.024210
  26. 26. Kamitsos E.I., Chyssikos G.D. Solid State Ionics 1998. 105. P. 75–85. https://doi.org/10.1016/S0167-2738 (97)00451-7
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library