- Код статьи
- 10.31857/S023501062303009X-1
- DOI
- 10.31857/S023501062303009X
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 3
- Страницы
- 298-306
- Аннотация
- Экспериментальные исследования плотности и электрического сопротивления сплавов Al86Ni6Co2РЗМ6 (РЗМ = Sm, Tb) проведены в широком температурном интервале, включая кристаллическое и жидкое состояния. Плотность измеряли методом проникающего гамма-излучения, а электросопротивление – бесконтактным методом во вращающемся магнитном поле. Определены температуры солидус, ликвидус, коэффициенты теплового расширения и относительные изменения плотности и сопротивления при плавлении. Рассчитаны молярные объемы сплавов. Установлено, что исследованные составы характеризуются широкой областью двухфазного состояния, в которой температурные зависимости плотности и электросопротивления имеют нелинейный вид. При температуре ликвидус обнаружено скачкообразное увеличение плотности и уменьшение электросопротивления. Установлено, что тербий увеличивает плотность сплавов и снижает их удельное сопротивление больше, чем самарий. В жидком состоянии при T ≤ 1300–1350 K зафиксирован гистерезис плотности и показано его отсутствие на политермах сопротивления. Это может свидетельствовать о процессах распада крупномасштабных неоднородностей, которые не влияют на параметры электронной подсистемы сплавов, но играют важную роль при аморфизации. Обнаруженные особенности свойств позволят оптимизировать процесс подготовки расплавов перед быстрой закалкой для получения качественных аморфных и нанокристаллических образцов.
- Ключевые слова
- алюминиевые сплавы плотность электрическое сопротивление стеклообразующая способность
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 11
Библиография
- 1. Inoue A., Kimura H. // J. Light Met. 2001. 1. P. 31–41. https://doi.org/0.1016/S1471-5317 (00)00004-3
- 2. Inoue A., Ohtera K., Tsai A.P. // Jap. J. Appl. Phys. 1988. 27. № 9. L1579–L1582. https://doi.org/10.1143/JJAP.27.L736
- 3. Wang L., Ma L., Kimura H., Inoue A. // Mat. Lett. 2002. 52. № 1–2. P. 47–52. https://doi.org/10.1016/S0167-577X (01)00364-0
- 4. Rusanov B., Sidorov V., Svec P., Janickovic D., Moroz A., Son L., Ushakova O. // J. Alloys and Comp. 2019. 787. P. 448–451. https://doi.org/10.1016/j.jallcom.2019.02.058
- 5. Svec P., Rusanov B., Moroz A., Petrova S., Janickovic D., Sidorov V., Svec P. Sr. // J. Alloys and Comp. 2021. 876. 160109. https://doi.org/10.1016/j.jallcom.2021.160109
- 6. Abrosimova G., Chirkova V., Pershina E., Volkov N., Sholin I., Aronin A. // Metals. 2022. 12. P. 332–342. https://doi.org/10.3390/met12020332
- 7. Uporov S.A., Uporova N.S., Sidorov V.E. et al. // High Temp. 2012. 50. P. 611–615. https://doi.org/10.1134/S0018151X12040207
- 8. Lad’yanov V.I., Bel’tyukov A.L., Men’shikova S.G., Maslov V.V., Nosenko V.K., Mashira V.A. Viscosity of glass forming Al86Ni8(La/Ce)6, Al86Ni6Co2Gd4(Y/Tb)2 melts // Phys. and Chem. of Liq. 2008. 46. № 1. P. 71–77. https://doi.org/10.1080/00319100701488508
- 9. Lad’yanov V.I., Bel’tyukov A.L., Men’shikova S.G., Volkov V.A. // Met. Sci. and Heat Treat. 2007. 49. № 5–6. P. 236–239. https://doi.org/10.1007/s11041-007-0042-5
- 10. Rusanov B., Sidorov V., Svec P., Janickovic D. // Phys. B: Cond. Matt. 2021. 619. 413216. https://doi.org/10.1016/j.physb.2021.413216
- 11. Rusanov B.A., Baglasova E.S., Popel P.S., Sidorov V.E., Sabirzyanov A.A. // High Temp. 2018. 56. P. 439–443. https://doi.org/10.1134/S0018151X18020190
- 12. Brodova I.G., Popel P.S., Eskin G.I. Liquid Metal Processing: Application to Aluminum Alloys Production / Taylor and Francis, New York, 2002.
- 13. Rusanov B.A., Sidorov V.E., Moroz A.I., Svec P., Sr., Janickovic D. // Tech. Phys. Lett. 2021. 47. № 8. P. 777–779. https://doi.org/10.1134/S1063785021080101
- 14. Vasin M.G., Menshikova S.G., Ivshin M.D. // Physica A. 2016. 449. P. 64–73. https://doi.org/10.1016/j.physa.2015.12.085
- 15. Son L.D. // Bull. Russ. Acad. Sci. Phys. 2022. 86. P. 145–149. https://doi.org/10.3103/S1062873822020289