RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

THERMOCHEMICAL STUDY OF THE FORMATION OF SILICIDES, BORIDES, CARBIDES IN Fe–Ni–Cr–Cu–Si–B–C ALLOY

PII
10.31857/S0235010623040023-1
DOI
10.31857/S0235010623040023
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
414-425
Abstract
To determine thermochemical characteristics: enthalpy, molar heat capacity and Gibbs energy of formation of silicides, borides and carbides in an alloy of a given composition (40Fe–31Ni–16Cr–5Cu–5Si–2B–1C) calculation methods were used using mixed GGA and GGA + U schemes (semi-empirically tuned generalized gradient approximations). Three modules of the HSC Chemistry 6.0 software package (Metso Outotec, version 6.0, Espoo, Finland) were used in the study. First, the “Reaction Equation” module was used to calculate the change in Gibbs free energy at different temperatures. Secondly, to calculate the composition of each chemical in the equilibrium state, the module “Equilibrium Composition” was used (“Equilibrium compositions” – calculation of equilibrium compositions of phases in the presence of reversible chemical reactions). Thirdly, the module “H, S, C and G diagrams” (“Graphs of thermodynamic functions” – plotting thermodynamic functions) was used to determine the relative phase stability of compounds depending on temperature in the form of Ellingham diagrams. The results of thermochemical modeling showed that the temperature dependences of the heat capacity of the formation of hardening compounds in the alloy increase with increasing temperature. Thermodynamic calculations of the enthalpies of the hardening phases in the alloy showed that at temperatures >1400°C, silicides, borides, and carbides are formed. ∆G(T) of silicides, there is an increase in the values of the Gibbs energy and a tendency towards stability with increasing temperature. During the formation of borides in the alloy, one can see a strong absorption of heat, an increase in the Gibbs energy in the studied temperature range. The results of calculating the Gibbs energy as a function of temperature showed the formation of carbides Ni3C, Fe3C, SiC, B4C, Cr3C2, Cr4C, Cr7C3. The formation of phases occurs with a decrease in the values of the Gibbs energy to a temperature of ~1500°C. A further increase in temperature indicates the absorption of heat, which is associated with a high ordering temperature of the carbide structures. Thus, the thermochemical study justified the formation of silicides, borides, carbides in the alloy 40Fe–31Ni–16Cr–5Cu–5Si–2B–1C.
Keywords
термохимическое моделирование энтальпия молярная теплоемкость энергия Гиббса сплав
Date of publication
01.04.2023
Year of publication
2023
Number of purchasers
0
Views
52

References

  1. 1. Tolokonnikova V., Baisanov S., Yerekeyeva G., Narikbayeva G., Korsukova I. Thermodynamic-diagram analysis of the Fe–Si–Al–Mn system with the construction of diagrams of phase relations // Metalurgija. 2022. 61. № 3–4. P. 828–830. https://hrcak.srce.hr/clanak/397172
  2. 2. Baisanov S., Tolokonnikova V., Narikbayeva G., Korsukova I. Thermodynamic substantiation of compositions of silicon aluminium alloys with increased aluminium content in Fe–Si–Al system // Complex Use of Mineral Resources. 2022. 321. № 2. P. 31–37.
  3. 3. Shevko V.M., Aitkulov D.K., Amanov D.D., Badikova A.D., Tuleyev M.A. Thermodynamic modeling calciumcarbide and a ferroalloy formation from a system of the daubaba deposit basalt – Carbon–Iron // News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2019. 1. № 433. P. 98–106.
  4. 4. Lemire R.J. Chemical Thermodynamics of Iron, Part I. – Boulogne-Billancourt (France): OECD // Chemical Thermodynamics (OECD, TDB-NEA). 2013. 13a.
  5. 5. Lemire R.J., Berner U., Musikas C., Palmer D.A., Taylor P., Tochiyama O., Perrone J. Chemical Thermodynamics of Iron, Part II. – Boulogne-Billancourt (France): OECD, // Chemical Thermodynamics (OECD, TDB-NEA). 2020. 13b.
  6. 6. Ильиных Н.И., Куликова Т.В., Моисеев Г.К. Состав и равновесные характеристики металлических расплавов бинарных систем на основе железа, никеля и алюминия. Екатеринбург: УрО РАН, 2006.
  7. 7. Хасуй А. Техника напыления. М.: Машиностроение, 1975.
  8. 8. Агеев Н.Г., Набойченко С.С. Металлургические расчеты с использованием пакета прикладных программ HSC Chemistry: учеб. пособие. Екатеринбург: Изд-во Урал. Ун-та, 2016.
  9. 9. Банных О.А., Будберг П.Б., Алисова С.П. Диаграммы состояния двойных и многокомпонентных систем на основе железа. Металлургия. 1986.
  10. 10. Kubaschewski O. Iron-Binary phase diagrams. Springer Science & Business Media, 2013.
  11. 11. Xiong W., Selleby M., Chen Q., Du J.O.Y. Phase equilibria and thermodynamic properties in the Fe–Cr system //Critical Reviews in Solid State and Materials Sciences. 2010. 35. № 2. P. 125–152.
  12. 12. Jain D., Isheim D., Hunter A.H., Seidman D.N. // Metall. Mater. Trans. 2016. A47. № 3872. P. 3860–3872. https://doi.org/10.1007/s11661-016-3569-5
  13. 13. Okamoto H. The C–Fe (carbon-iron) system // J. Phase Equilibria. 1992. 13. № 5. P. 543–565.
  14. 14. Моисеев Г.К., Ватолин Н.А. О возможности согласования стандартных энтальпий образования (СЭО) родственных, бинарных и квазибинарных неорганических систем // Доклады РАН. 1999. 2. № 367/2. С. 208–214.
  15. 15. Рябухин А.Г., Груба О.Н. Расчеты стандартных энтальпий и энергий Гиббса образования карбидов хрома произвольного состава // Вестник ЮУрГУ. 2005. № 10. С. 9–13.
  16. 16. Dreizin E.L., Schoenitz M. Mechanochemically prepared reactive and energetic materials: a review // J. Mater. Sci. 2017. 52. P. 11789–11809.
  17. 17. Azabou M., Ibn Gharsallah H., Escoda L., Suñol J.J., Kolsi A.W., Khitouni M. Mechanochemical reactions in nanocrystalline Cu–Fe system induced by mechanical alloying in air atmosphere // Powder Technol. 2012. 224. P. 338–344.
  18. 18. Mao H., Chen H.-L., Chen Q. TCHEA1: a thermodynamic database not limited for “high entropy” alloys // J. Phase Equilib. Diff. 2017. 38. P. 353–368.
  19. 19. Pawar S., Jha A.K., Mukhopadhyay G. // Int. J. Refr. Met. Hard Mater. 2019. 78. P. 288–295. https://doi.org/10.1016/j.ijrmhm.2018.10.014
  20. 20. Gordienko S.P. // Powder Metallurgy and Metal Ceramics. 2002. 41. P. 169–172. https://doi.org/10.1023/A:1019839111434
  21. 21. Ведмидь Л.Б., Красиков С.А., Жилина Е.М., Никитина Е.В., Евдокимова И.В., Меркушев А.Г. Эволюция фазообразования при алюминотермическом восстановлении tитана и циркония из оксидов // Расплавы. 2018. № 3. С. 330–335.
  22. 22. Жилина Е.М., Красиков С.А., Агафонов С.Н. Расчет активности титана и циркония в алюмокальциевом оксидном расплаве // Расплавы. 2016. № 4. С. 300–306.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library