- PII
- 10.31857/S0235010623040072-1
- DOI
- 10.31857/S0235010623040072
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 426-436
- Abstract
- In this work were studied density (by gamma-absorption method) and electrical resistivity (by contactless method in rotating magnetic field) of Al–Ni–Co–Ce glass-forming alloys with different ratios of transition metals. It was found the existence of a wide two-phase zone was established and jump-like changes in properties at solidus and liquidus temperatures. Increasing of cobalt content from 2 to 4 at % leads to 2% decrease of density and 3% increase of electrical resistivity in crystalline and liquid states. Temperature coefficients of change in properties were calculated. Density hysteresis was detected, which occurs when melts are overheated above 1350 K. This fact is related to the disintegration of large-scale microheterogeneities that exist in melts during heating. It is shown that these results can be used to optimize the process of obtaining rapidly hardened alloys.
- Keywords
- алюминиевые сплавы алюминий переходные металлы церий плотность электросопротивление
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Inoue A., Ohtera K., Tsai A.P., Masumoto T. Aluminum-based amorphous alloys with tensile strength above 980 MPa (100 kg/mm2) // Jpn. J. Appl. Phys. 1988. 27. P. L479–L482.
- 2. Jones H., Suryanarayana C. Rapid quenching from the melt // J. Mater. Sci. 1973. 72. № 8. P. 705–753.
- 3. Zhang L.M., Zhang S.D., Ma A.L., Umoh A.J., Hu H.X., Zheng Y.G., Yang B.J., Wang J.Q. Influence of cerium content on the corrosion behavior of Al–Co–Ce amorphous alloys in 0.6 M NaCl solution // J. Mat. Sci. & Tech. 2019. 35. № 7. P. 1378–1387.
- 4. Tailleart N.R., Huang R., Aburada T., Horton D.J., Scully J.R. Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al–Co–Ce alloy // Corr. Sci. 2012. 59. P. 238–248.
- 5. Карфидов Э.А., Никитина Е.В., Русанов Б.А., Сидоров В.Е. Влияние кобальта на коррозионную стойкость аморфных сплавов Al–Ni–Co–R // Расплавы. 2022. 5. С. 477–484.
- 6. Gloriant T., Greer A.L. // Nanostruct. Mat. 1998. 10. P. 389–396. https://doi.org/10.1016/S0965-9773 (98)00079-8
- 7. Li C.L., Wang P., Sun S.Q., Voisey K.T., McCartney D.G. // App. Surf. Sci. 2016. 384. P. 116–124. https://doi.org/10.1016/j.apsusc.2016.04.188
- 8. Zhang Y., Warren P.J., Cerezo A. // Mater. Sci. Eng. A. 2002. 327. P. 109–115. https://doi.org/10.1016/S0921-5093 (01)01888-3
- 9. Abrosimova G., Aronin A., Budchenko A. // Mat. Lett. 2015. 139. P. 194–196. https://doi.org/10.1016/j.matlet.2014.10.076
- 10. Radiguet B., Blavette D., Wanderka N., Banhart J., Sahoo K.L. // Appl. Phys. Lett. 2008. 92. P. 103126. https://doi.org/10.1063/1.2897303
- 11. Louzguine-Luzgin D.V., Inoue A. // J. Alloys and Comp. 2005. 399. P. 78–85. https://doi.org/10.1016/j.jallcom.2005.02.018
- 12. Bazlov A.I., Tabachkova N.Y., Zolotorevsky V.S., Louzguine-Luzgin D.V. Unusual crystallization of Al85Y8Ni5Co2 metallic glass observed in situ in TEM at different heating rates // Intermet. 2018. 94. P. 192–199.
- 13. Jin L., Zhang L., Liu K., Che Z., Li K., Zhang M., Zhang B. Preparation of Al-based amorphous coatings and their properties // J. Rare Earths. 2021. 39. № 3. P. 340–347.
- 14. Triveco Rios C., Suricach S., Bary M.D., Bolfarini C., Botta W.J., Kiminami C.S. Glass forming ability of the Al–Ce–Ni system // J. Non-Cryst. Sol. 2008. 354. P. 4874–4877.
- 15. Абросимова Г.Е., Аронин А.С., Ширнина Д.П. Изменение структуры металлического стекла Al88Ni2Y10 при термообработке и деформации // Физика и техника высоких давлений. 2013. 23. № 1. С. 90–98.
- 16. Suryanarayana C., Inoue A. Bulk metallic glasses. CRC Press. 2017.
- 17. Русанов Б.А., Сидоров В.Е, Сон Л.Д. // Изв. вузов. Физика. 2022. 65. № 6. С. 112–118. https://doi.org/10.17223/00213411/65/6/112
- 18. Bruker AXS. In DIFFRAC. EVA V5.1. Bruker AXS GmbH, Karlsruhe, Germany. 2019.
- 19. Gates-Rector S., Blanton T. // Powder Diffr. 2019. 34. № 4. P. 352–360. https://doi.org/10.1017/S0885715619000812
- 20. Rietveld H.M. // J. Appl. Cryst. 1969. 2. P. 65–71. https://doi.org/10.1107/S0021889869006558
- 21. Coelho A.A. // J. Appl. Cryst. 2018. 51. P. 210–218. https://doi.org/10.1107/S1600576718000183
- 22. Rusanov B.A., Baglasova E.S., Popel P.S., Sidorov V.E., Sabirzyanov A.A. // High Temp. 2018. 56. P. 439–443. https://doi.org/10.1134/S0018151X18020190
- 23. Регель А.Р., Глазов В.М. Физические свойства электронных расплавов. М: Наука. 1980.
- 24. Rusanov B.A., Sidorov V.E., Moroz A.I., Svec Sr.P., Janickovic D. // Tech. Phys. Lett. 2021. 47. P. 770–772. https://doi.org/10.1134/S1063785021080101