RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

SPECTRAL ANALYSIS IN THE EVALUATION OF THE ELECTROCHEMICAL BEHAVIOR OF HIGH-ENTROPY GdTbDyHoSc AND GdTbDyHoY ALLOYS

PII
10.31857/S0235010623060087-1
DOI
10.31857/S0235010623060087
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
577-589
Abstract
The corrosion behavior of disordered systems, such as high-entropy alloys, exhibit a stochastic random process. To accurately predict and analyze the behavior of these systems in service environments, it is necessary to employ new computational and experimental methods alongside classical electrochemical methods. In this study, we highlighted the effectiveness of using fast Fourier transform and wavelet analysis to assess the corrosion behavior of stochastic systems, using the example of equimolar rare-earth alloys GdTbDyHoSc and GdTbDyHoY. To evaluate the corrosion behavior, we measured the time series of potential fluctuations for the studied samples in a 0.01 M NaCl solution over a 12-hour period, at current densities ranging from 0.2 to 0.5 mA/cm2. Applying the fast Fourier transform method to analyze the obtained time series, we observed that the angular coefficient of the slope of the logarithm of the power spectral density logarithm to the logarithm of frequency increased with higher current density. Specifically, for the GdTbDyHoSc alloy, the coefficient increased from –1.46 to –1.35, indicating the prevalence of general corrosion dissolution. In contrast, for the GdTbDyHoY alloy, the coefficient increased from –1.93 to –1.77, suggesting the dominance of localized dissolution. Furthermore, we utilized wavelet analysis to process the time series data for both alloys at current densities ranging from 0.2 to 0.5 mA/cm2. This analysis allowed us to plot time series scalograms, which visually illustrated the intensity of the corrosion process on the surface of the investigated alloys. From the scalograms, we calculated the values of the global energy spectra distributed over frequency ranges, as well as the values of the total energy of the investigated systems. Interestingly, the GdTbDyHoY alloy exhibited higher total energy values compared to the GdTbDyHoSc alloy. Specifically, the total energy for the GdTbDyHoY alloy increased from 0.97 to 2.03 kV2 as the current density increased from 0.2 to 0.5 mA/cm2, respectively. For the GdTbDyHoSc alloy, the total energy increased from 0.50 to 0.84 kV2. In conclusion, the application of fast Fourier transform and wavelet analysis methods proved to be effective tools for gaining a deep understanding of the corrosion behavior of locally disordered chemical systems, such as the high-entropy alloys of GdTbDyHoSc and GdTbDyHoY composition.
Keywords
электрохимия высокоэнтропийные сплавы временны́е ряды электрохимический шум спектральные методы быстрое преобразование Фурье вейвлет-анализ электрохимическое растворение
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. // Adv. Eng. Mater. 2004. 6. P. 299–303. https://doi.org/10.1002/adem.200300567
  2. 2. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. // Mater. Sci. Eng. A. 2004. 375–377. P. 213–218. https://doi.org/10.1016/j.msea.2003.10.257
  3. 3. Yeh J.W., Lin S.J., Chin T.S., Gan J.Y., Chen S.K., Shun T.T., Tsau C.H., Chou S.Y. // Metall. Mater. Trans. A. 2004. 35. P. 2533–2536. https://doi.org/10.1007/s11661-006-0234-4
  4. 4. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. // Prog. Mater. Sci. 2014. 61. P. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
  5. 5. Gao M.C. // Cham: Springer. 2016. P. 369–398. https://doi.org/10.1007/978-3-319-27013-5_11
  6. 6. Chen Y.Y., Duval T., Hung U.D., Yeh J.W., Shih H.C. // Corros. Sci. 2005. 47. P. 2257–2279. https://doi.org/10.1016/j.corsci.2004.11.008
  7. 7. Shi Y., Yang B., Liaw P.K. // Metals. 2017. 7. № 2. P. 43. https://doi.org/10.3390/met7020043
  8. 8. Qiu Y., Thomas S., Gibson M.A., Fraser H.L., Birbilis N. // npj Materials Degradation. 2017. 1. P. 15. https://doi.org/10.1038/s41529-017-0009-y
  9. 9. Упоров С.А., Эстемирова С.Х., Стерхов Е.В., Зайцева П.В., Скрыльник М.Ю., Шуняев К.Ю., Ремпель А.А. // Расплавы. 2022. № 5. С. 443–453. https://doi.org/10.31857/S0235010622050097
  10. 10. Ефремов А.П. Химическое сопротивление материалов: учеб. пособие. М.: Изд-во РГУ нефти и газа им. И.М. Губкина, 2004.
  11. 11. Экилик В.В. Теория коррозии и защиты металлов. Методическое пособие по спецкурсу. Ростов-на-Дону: Изд-во РГУ, 2004.
  12. 12. Fukuda T., Mizuno T. // Corros. Sci. 1996. 38. № 7. P. 1085–1091. https://doi.org/10.1016/0010-938X (96)00003-0
  13. 13. He L., Jiang Y., Guo Y., Wu X., Li J. // Corrosion Engineering, Science and Technology. 2016. 51. P. 187–194. https://doi.org/10.1179/1743278215Y.0000000048
  14. 14. Ярушкина Н.Г., Афанасьева Т.В., Перфильева И.Г. Интеллектуальный анализ временны́х рядов: учебное пособие. Ульяновск: Изд-во УлГТУ, 2010.
  15. 15. Дженкинс Д., Ваттс Д. Спектральный анализ и его приложение. М.: Мир, 1978.
  16. 16. Дьяконов В., Абраменкова И. MATLAB. Обработка сигналов и изображений. Специальный справочник. СПб.: Питер, 2002.
  17. 17. Mansfeld F., Xiao H. // J. Electrochem. Soc. 1993. 140. № 8. P. 2205. https://doi.org/10.1149/1.2220796
  18. 18. Legat A., Zevnik C. // Corros. Sci. 1993. 35. P. 1661–1666. https://doi.org/10.1016/0010-938X (93)90396-X
  19. 19. Ташлинский А.Г., Минкина Г.Л. Спектральный анализ сигналов и исследование свойств преобразования Фурье: методические указания к выполнению лабораторных работ по курсу Введение в теорию сигналов. Ульяновск: Изд-во УлГТУ, 2007.
  20. 20. Zhang T., Shao Y., Meng G., Wang F. // Electrochim. Acta. 2007. 53. P. 561–568. https://doi.org/10.1016/j.electacta.2007.07.014
  21. 21. Cheng Y.F., Luo J.L., Wilmott M. // Electrochim. Acta. 2000. 45. P. 1763–1771. https://doi.org/10.1016/S0013-4686 (99)00406-5
  22. 22. Kovac J., Alaux C., Marrow T.J., Govekar E., Legat A. // Corros. Sci. 2010. 52. P. 2015–2025. https://doi.org/10.1016/j.corsci.2010.02.035
  23. 23. Воробьев В.И., Грибунин В.Г. Теория и практика вейвлет-преобразования. СПб.: ВУС, 1999.
  24. 24. Planinšič P., Petek A. Wavelets in Electrochemical Noise Analysis, 2007.
  25. 25. Астафьева Н.М. // Успехи физических наук. 1996. 166. № 11. С. 1145–1170. https://doi.org/10.3367/UFNr.0166.199611a.1145
  26. 26. Витязев В.В. Вейвлет анализ временны́х рядов: Учеб. пособие. СПб.: Изд-во С.-Петерб. ун-та. 2001.
  27. 27. Wang C., Wu L., Xue F., Ma R., Etim I.N., Hao X., Dong J., Ke W. // Journal of Materials Science & Technology. 2018. 34. № 10. P. 1876–1884. https://doi.org/10.1016/j.jmst.2018.01.015
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library