RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Corrosion behavior of AlNiCoCuZr high-entropy equiatomic alloy in NaCl solution

PII
10.31857/S0235010624010083-1
DOI
10.31857/S0235010624010083
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
82-89
Abstract
The service characteristics of high-entropy alloys, in particular their corrosion properties, are the subject of active study by many scientific groups. Interest to high-entropy alloys is determined by their relative simplicity of production (most often by arc melting with low cooling rates), corrosion resistance and high values of mechanical properties (hardness, strength). A special place among high-entropy alloys is occupied by compositions based on aluminum and transition metals (nickel, iron, cobalt) due to their service characteristics comparable with some bulk-amorphous compositions. For wider industrial application of such alloys, information on the peculiarities of corrosion processes therein is required. Corrosion behavior of Al₂₀Ni₂₀Co₂₀Cu₂₀Zr₂₀ alloy in water solution of 5 wt % NaCl as a result of exposure for 1500 h at 25oC was investigated in present work. It was found that the alloy was subjected to minimal corrosion due to dissolution of nickel and cobalt, with a corrosion rate of 2.98±0.01 mg/m2h. By electrochemical measurements, the value of corrosion potential was found to be –0.19 V relative to the chlor-silver reference electrode, and polarization to the anodic region resulted in selective dissolution of nickel and cobalt.
Keywords
высокоэнтропийный сплав алюминий переходный металл коррозия
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Wu M., Diao G., Yuan J.F. et al. // Wear. 2023. 523. P. 204765. https://doi.org/10.1016/j.wear.2023.204765
  2. 2. Gorsse S., Nguyen M.H., Senkov O.N., Miracle D.B. // Data in Brief. 2018. 21. P. 2664–2678. https://doi.org/10.1016/j.dib.2018.11.111
  3. 3. Sheng L., Zhengwei X., Yafeng L., Yun L., Dongsheng J., Ping W. // High Temp. Mater. and Proc. 2022. 41. № 1. P. 417–423. https://doi.org/10.1515/htmp-2022–0048
  4. 4. Beyramali Kivy M., Asle Zaeem M., Lekakh S. // Mater. and Design. 2017. 127. P. 224–232. https://doi.org/10.1016/j.matdes.2017.04.086
  5. 5. Guo S., Hu Q., Ng C., Liu C.T. // Intermet. 2013. 41. P. 96–103. https://doi.org/10.1016/j.intermet.2013.05.002
  6. 6. Kulkarni R., Murty B.S., Srinivas V. // J. of Alloy. and Comp. 2018. 746. P. 194–199. https://doi.org/10.1016/j.jallcom.2018.02.275
  7. 7. Guo S., Liu C. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase // Progr. in Nat. Sci.: Mater. Inter. 2011. 21. № 6. P. 433–446. https://doi.org/10.1016/S1002–0071 (12)60080-X
  8. 8. George E.P., Raabe D., Ritchie R.O. High-entropy alloys // Nat. Rev. Mater. 2019. 4. P. 515–534.https://doi.org/10.1038/s41578–019–0121–4
  9. 9. Yan Y., Fang L., Tan Y. et al. // J. of Mater. Research and Tech. 2023. 24. P. 5250–5259. https://doi.org/10.1016/j.jmrt.2023.04.116
  10. 10. Zan C., Chen J., Zhang H., Yuan J. // Inter. J. of Electrochem. Sci. 2023. 18. № 1. P. 100192. https://doi.org/10.1016/j.ijoes.2023.100192
  11. 11. Yang J., Zeng Y., Zhu M. et al. // J. of Electrochem. Sci. 2023. 18. № 5. P. 100132. https://doi.org/10.1016/j.ijoes.2023.100132
  12. 12. Zemanate A.M., Jorge Jr. A.M. // Electrochim. Acta. 2023. 441. P. 141844. https://doi.org/10.1016/j.electacta.2023.141844
  13. 13. Yang H., Liu X., Li A. et al. // J. of Alloy. and Comp. 2023. 964. 171226. https://doi.org/10.1016/j.jallcom.2023.171226
  14. 14. Wang J., Jiang H., Chang X. et al. // Corr. Sci. 2023. 221. P. 111313. https://doi.org/10.1016/j.corsci.2023.111313
  15. 15. Shivam V., Basu J., Pandey V. et al. // Adv. Powd. Tech. 2018. 29. № 9. P. 2221–2230. https://doi.org/10.1016/j.apt.2018.06.006
  16. 16. Rusanov B.A., Petrova S.A., Bykov V.A. et al. // Intermet. 2023. 161. P. 107975. https://doi.org/10.1016/j.intermet.2023.107975
  17. 17. ГОСТ 13819–68. Единая система защиты от коррозии и старения (ЕСЗКС). Металлы и сплавы. Десятибалльная шкала коррозионной стойкости (с изменением N1). М.: Издательство стандартов, 1981.
  18. 18. Лурье Ю.Ю. Справочник по аналитической химии. М.: Наука, 1979.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library