RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Calculation of isothermal compressibility of potassium halide melts and in binary mixtures KI–KX (X = F, Cl, Br) by the classical molecular dynamics

PII
10.31857/S0235010624010096-1
DOI
10.31857/S0235010624010096
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
101-108
Abstract
Calculations of the isothermal compressibility (ᵡT) of individual potassium halides and some binary mixtures, namely KI–KX (X = F, Cl, Br), by using the classical molecular dynamics were carried out. Simulations of potassium halide melts using the Born-Mayer-Huggins pair potential showed good agreement between the calculated isothermal compressibility values and experimental data. A systematic underestimation of the calculated ᵡT values for individual melts was discovered, with the maximum difference between the calculated and experimental values being 24% for potassium chloride. For binary mixtures KI–KX (X = F, Cl, Br), the experimental concentration dependences of ᵡT during the transition from bromide ion to fluoride ion are characterized by an increasing deviation from additivity. It is shown, that even now for the binary mixture KI–KBr, the calculated concentration dependence ᵡT has a pronounced nonlinear dependence. At the same time, the maximum differences between the calculated and experimental values of ᵡT are observed for the KI–KF binary mixture of equimolar composition and are about 34%.
Keywords
изотермическая сжимаемость структурный фактор галогенид калия молекулярная динамика парный потенциал Борна–Майера–Хаггинса
Date of publication
01.01.2024
Year of publication
2024
Number of purchasers
0
Views
60

References

  1. 1. Porter T., Vaka M., Steenblik P., Corte D. Computational methods to simulate molten salt thermophysical properties // Commun. Chem. 2022, 5. P. 69.
  2. 2. Yang H., Gallagher R., Chartrand P., Gheribi A.E. // Sol. Energy. 2023. 256. P. 158–178 https://doi.org/10.1016/j.solener.2023.04.009
  3. 3. Galashev A.Y., Abramova K.A., Vorob’ev A.S. et al. // Electrochemical Materials and Technologies. 2023. 2. № 3. P. 20232017 https://doi.org/10.15826/elmattech.2023.2.017
  4. 4. Shishido H., Yusa N., Hashizume H. et al. Thermal design investigation for a FLiNaBe blanket system // Fusion Sci. Tech. 2017. 72. № 3. P. 382–388.
  5. 5. Sooby E., Baty A., Benes O., McIntyre P., Pogue N., Salanne M., Sattarov A. // J. Nucl. Mater. 2013. 440. № 1-3. P. 298–303. https://doi.org/10.1016/j.jnucmat.2013.04.004
  6. 6. Минченко В.И., Степанов В.П. Ионные расплавы: упругие и калорические свойства. Екатеринбург: УрО РАН, 2008.
  7. 7. Fumi F.G., Tosi M.P. // J. Phys. Chem. Solids. 1964. 25. P. 31–43. https://doi.org/10.1016/0022-3697 (64)90159-3
  8. 8. Ribeiro M.C.C. // J. Phys. Chem. B. 2003. 107. P. 4392–4402. https://doi.org/10.1021/jp027261a
  9. 9. Wang J., Sun Z., Lu G., Yu J. // J. Phys. Chem. B 2014. 118. № 34. P. 10196–10206. https://doi.org/10.1021/jp5050332
  10. 10. Frenkel D and Smit B Understanding molecular simulation: From algorithms to applications. Academic Press, 2002.
  11. 11. Sangster M., Dixon M. // Adv. Phys. 1976. 25. P. 247–342. https://doi.org/10.1080/00018737600101392
  12. 12. Larsen B., Forland T., Singer K. // Mol. Phys. 1973. 26. № 6. P. 1521–1532. https://doi.org/10.1080/00268977300102671
  13. 13. Mayer J.E. // J. Chem. Phys. 1933. 1. № 4. P. 270–279. https://doi.org/10.1063/1.1749283
  14. 14. Allen M., Tildesley D. Computer simulations of liquids. New York: Oxford University Press, 1987.
  15. 15. Smirnov M.V., Stepanov V.P. // Electr. Acta. 1982. 27. № 11. P. 1551–1563 https://doi.org/10.1016/0013-4686 (82)80082-0
  16. 16. Nosé S. // Prog. Theor. Phys. Supp. 1991. 103. P. 1–46. https://doi.org/10.1143/PTPS.103.1
  17. 17. Refson K. // Comp. Phys. Commun. 2000. № 3. P. 310–329 https://doi.org/10.1016/S0010-4655 (99)00496-8
  18. 18. Bockris J.O.M., Richards N.E. // Proc. Roy. Soc. A. 1957. 241. № 1224. P. 44–66 https://doi.org/10.1098/rspa.1957.0112
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library