ОХНМРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Изучение состава расплава KCl – AlCl3 – ZrCl4 – HfCl4 применительно к экстрактивной ректификации хлоридов циркония и гафния

Код статьи
10.31857/S0235010624020055-1
DOI
10.31857/S0235010624020055
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 2
Страницы
211-222
Аннотация
В 2021 г. в АО ЧМЗ введено в эксплуатацию производство высокочистой циркониевой губки для производства компонентов ядерного топлива. Одним из основных этапов производства является очистка циркония от гафния до остаточной концентрации менее 0.01 мас. %. Очистка осуществляется методом ректификационного разделения смеси тетрахлоридов циркония и гафния в расплаве KCl–AlCl₃. Опыт эксплуатации установки разделения тетрахлоридов циркония и гафния показал, что для определения эксплуатационных свойств расплава недостаточно знать содержание в нем K, Al, Zr, Hf. В процессе эксплуатации установки расплав KCl–AlCl₃–ZrCl₄–HfCl₄ изучен комплексом независимых методов: рентгеновская дифрактометрия, восстановительное плавление в присутствии углерода, определение остаточного содержания циркония после отгонки летучих компонентов потоком инертного газа. В замороженных плавах методом рентгеновской дифрактометрии определено содержание фаз ZrCl₄, K₂ZrCl₆ и AlCl₃ на фоне матричной фазы KAlCl₄. Установлено, что фаза KCl не образуется. Изучено содержание ZrCl₄, AlCl₃ и K₂ZrCl₆ в расплаве на разных участках технологической схемы установки. Установлено, что в расплаве узла приготовления разделяемой смеси тетрахлоридов циркония и гафния, ректификационной колонны и испарителя присутствует ZrCl₄ и AlCl₃ или K₂ZrCl₆, в зависимости от избытка или недостатка AlCl₃ по отношению к KCl. В расплаве после десорбционной колонны ZrCl₄ и AlCl₃ отсутствуют, в ряде случаев обнаружен K₂ZrCl₆, причем его содержание коррелирует с содержанием Zr, определенного методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой. В замороженных плавах установлено содержание рентгеноаморфной компоненты, которая содержит до 1.5 мас. % алюминия и до 3.5 мас. % циркония. Методом восстановительного плавления в присутствии углерода в замороженных плавах установлено содержание кислорода до 1.8 мас. %, который входит в состав рентгенноаморфной компоненты, предположительно состоящей из AlOCl и ZrOCl². Исследовано остаточное содержание циркония в пробах расплава после отгонки летучих компонентов потоком аргона при температуре 550°С при различном содержании AlCl₃. По результатам исследований разработана методика определения соотношения AlCl₃/KCl, основанная на различии в физико-химических свойствах компонентов расплава. Показано, что мольное соотношение Al/K, рассчитанное по массовым долям Al и K в расплаве, выше мольного соотношения AlCl₃/KCl, полученного по разработанной методике. На основе полученных результатов организована корректировка состава расплава при эксплуатации установки разделения хлоридов циркония и гафния в АО ЧМЗ.
Ключевые слова
тетрахлорид циркония хлорид алюминия хлоралюминат калия гексахлорцирконат калия рентгеновская дифрактометрия
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Coleman С. The metallurgy of zirconium. International Atomic Energy Agency. 2022. 1. P. 466.
  2. 2. Skaggs R., Rogers D., Hunter D. Review of Anhydrous Zirconium-Hafnium Separation Techniques. Information circular. United States Department of the Interior, Bureau of Mines. 1984.
  3. 3. Besson P., Guerin J., Brun P., Bakes M. Process for the separation of zirconium and hafnium tetrachlorides from mixtures thereof. US Pat. 4021531. 1977.
  4. 4. Ивановский Л.Е., Хохлов В.А., Казанцев Г.Ф. Физическая химия и электрохимия хлоралюминатных расплавов. М.: Наука. 1993.
  5. 5. Delpech S. Molten salts for nuclear applications. Molten Salts Chemistry. From Lab to Applications / Ed.F. Lantelme, H. Groult. /Amsterdam. Boston. Heidelberg et al.: Elsevier. 2013. 24. P. 497–520.
  6. 6. Салюлев А.Б., Закирьянова И.Д., Вовкотруб Э.Г. Исследование продуктов взаимодействия ZrCl4 и HfCl4 с хлоридами щелочных металлов и с пентахлоридом фосфора методом спектроскопии КР // Расплавы. 2012. № 5. С. 53–61.
  7. 7. Салюлев А.Б., Хохлов В.А., Москаленко Н.И. Электропроводность расплавленных смесей KAlCl4–ZrCl4 в широком интервале температур // Расплавы. 2018. № 5. С. 1–8.
  8. 8. Морозов И.С. Применение хлора в металлургии редких и цветных металлов. М.: Наука. 1966.
  9. 9. Flengas S, Dutrizak J., A new process for the separation of hafnium from zirconium // Metal. Trans. 8B. 1977. P. 377–385.
  10. 10. Нехамкин Л.Г. Металлургия циркония и гафния. М.: Металлургия. 1979.
  11. 11. Панфилов А.В., Коробков А.В., Бузмаков В.В., Терешин В.В. Изучение процесса десорбции тетрахлорида циркония из расплава KCl–AlCl3 // Вопросы атомной науки и техники. Серия: Материаловедение и новые материалы. 2022. 4. № 115. С. 58–65.
  12. 12. Ivshina A.A., Abramov A.V., Chukin A.V., Polovov I.B., Danilov D.A., Denisova O.V. and Karpov V.V. // AIP Conference Proceedings. 2022. https://doi.org/10.1063/5.0088853
  13. 13. Karpov V.V., Polovov I.B., Kudryashova D.V., Lisienko D.G., Volkovich V.A., Chukin A.V. and Rebrin O.I. Indirect methods of determination of K: Al mole ratio in molten chloroaluminates // The Electrochemical Society. 2014. 64. № 4. P. 461–472.
  14. 14. Kartashova E.S., Danilov D.A., Polovov I.B. // AIP Conf. Proc. 2022. 2466. № 1. Р. 050016.https://doi.org/10.1063/5.0088865.
  15. 15. Дулепов Ю.Н., Звонков И.Н., Скиба К.В., Чинейкин С.В., Шипулин С.А., Крицкий А.А., Панфилов А.В., Каримов И.А., Коробков А.В. Способ повышения эффективности ректификационного разделения тетрахлоридов циркония и гафния. Патент РФ. 2745521. 2020.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека