RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Exact analytical solution of the equations for a quasiequilibrium two-phase domain: permeability and interdendritic spacing

PII
10.31857/S0235010624030027-1
DOI
10.31857/S0235010624030027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
238-251
Abstract
This study is concerned with the theoretical description of a quasi-stationary process of directional crystallization of binary melts and solutions in the presence of a quasi-equilibrium two-phase region. The quasi-equilibrium process is ensured by the fact that the system supercooling is almost completely compensated by heat released during the phase transformation. Quasi-stationarity of the process determining constancy of the crystallization rate is ensured by given temperature gradients in the solid and liquid phases. The system of heat and mass transfer equations and boundary conditions to them under these assumptions is dependent on a single spatial variable in the reference frame moving with the crystallization rate relative to a laboratory coordinate system. Exact analytical solutions to the formulated problem in parametric form are obtained. The parameter of the solution is the solid phase fraction in a two-phase region. The distributions of temperature and impurity concentration in the solid, liquid and two-phase regions of the crystallizing system, the rate of solidification, and the spatial coordinate in the two-phase region depending on the solid phase fraction in it are found. An algebraic equation for the solid phase fraction at the interface between the solid material and the two-phase region is derived. Exact analytical solutions show that the impurity concentration in the two-phase layer increases as the solid phase fraction increases. Moreover, the solid phase fraction at the interface solid phase — two phase region and its thickness increase as the temperature gradient in the solid phase and the solidification rate increase. The developed theory allows us to determine analytically the permeability of the two-phase region and a characteristic interdendritic spacing in it. Analytical solutions show that the relative permeability in the two-phase region increases from a certain value at the interface with the solid phase to unity at the interface with the liquid phase. The selection theory of stable dendritic growth allows us to determine analytically a characteristic interdendritic distance in the two-phase layer that decreases as the temperature gradient in the solid phase increases. An increase of impurity in the molten phase gives a decrease in the interdendritic spacing within a two-phase region.
Keywords
квазиравновесная двухфазная область кристаллизация доля твердой фазы критерий отбора проницаемость междендритное расстояние
Date of publication
01.03.2024
Year of publication
2024
Number of purchasers
0
Views
43

References

  1. 1. Flemings M. Solidification Processing. New York: McGraw Hill, 1974.
  2. 2. Mullin J.W. Crystallization. London: Butterworths, 1972.
  3. 3. Makoveeva E.V., Alexandrov D.V., Ivanov A.A. // Math. Meth. Appl. Sci. 2021. 44. № 16. P. 12244–12251. https://doi.org/10.1002/mma.6970
  4. 4. Barlow D.A., La Voie-Ingram E., Bayat J. // J. Cryst. Growth. 2022. 578. 126417. https://doi.org/10.1016/j.jcrysgro.2021.126417
  5. 5. Makoveeva E.V., Alexandrov D.V. // Russ. Metall. (Metally). 2018. 8. P. 707–715. https://doi.org/10.1134/S0036029518080128
  6. 6. Alexandrov D.V., Nizovtseva I.G., Alexandrova I.V. // Int. J. Heat Mass Trans. 2019. 128. P. 46–53. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.119
  7. 7. Makoveeva E. V., Alexandrov D. V. // Eur. Phys. J. Spec. Top. 2020. 229. P. 2923–2935.https://doi.org/10.1140/epjst/e2020-000113-3
  8. 8. Alexandrov D.V., Ivanov A.A., Nizovtseva I.G. et al. Crystals. 2022. 12. 949. https://doi.org/10.3390/cryst12070949
  9. 9. Buyevich Yu.A., Alexandrov D.V., Mansurov V.V. Macrokinetics of Crystallization. New York: Begell House, 2001.
  10. 10. Alexandrova I.V., Alexandrov D.V., Aseev D.L., Bulitcheva S.V. // Acta Physica Polonica A. 2009. 115. № 4. P. 791–794. https://doi.org/10.12693/APHYSPOLA.115.791
  11. 11. Deguen R., Alboussière T., Brito D. // Phys. Earth Planet. Int. 2007. 164. № 1–2. P. 36–49.https://doi.org/10.1016/j.pepi.2007.05.003
  12. 12. Alexandrov D.V., Galenko P.K. // Phys. Rev. E. 2013. 87. № 6. P. 062403. https://doi.org/10.1103/PhysRevE.87.062403
  13. 13. Alexandrov D.V., Galenko P.K. // Phil. Trans. R. Soc. A. 2021. 379. № 2205. P. 20200325. https://doi.org/10.1098/rsta.2020.0325
  14. 14. Alexandrov D.V., Osipov S.I., Galenko P.K., Toropova L.V. // Crystals. 2022. 12. P. 1288. https://doi.org/10.3390/cryst12091288
  15. 15. Hills R.N., Loper D.E., Roberts P.H. // Q. J. Appl. Math. 1983. 36. № 4. P. 505–540. https://doi.org/10.1093/qjmam/36.4.505
  16. 16. Worster M.G. // J. Fluid Mech. 1986. 167. P. 481–501. https://doi.org/10.1017/S0022112086002938
  17. 17. Alexandrov D.V., Ivanov A.O. // J. Cryst. Growth. 2000. 210. № 4. P. 797–810. https://doi.org/10.1016/S0022-0248 (99)00763-0
  18. 18. Alexandrov D.V. // Acta Mater. 2001. 49. № 5. P. 759–764. https://doi.org/10.1016/S1359-6454 (00)00388-8
  19. 19. Worster M.G. // J. Fluid Mech. 1992. 237. P. 649–669. https://doi.org/10.1017/S0022112092003562
  20. 20. Schulze T.P., Worster M.G. // J. Fluid Mech. 1998. 356. P. 199–220. https://doi.org/10.1017/S0022112097007878
  21. 21. Notz D., Worster M.G. // Ann. Glaciol. 2006. 44. P. 123–128. https://doi.org/10.3189/172756406781811196
  22. 22. Alexandrov D.V., Galenko P.K. // Phys.-Usp. 2014. 57. № 8. P. 771–786. https://doi.org/10.3367/UFNe.0184.201408b.0833
  23. 23. Tong X., Beckermann C., Karma A., Li Q. // Phys. Rev. E. 2001. 63. № 6. P. 061601. https://doi.org/10.1103/PhysRevE.63.061601
  24. 24. Trivedi R. // Metall. Mater. Trans. A. 1984. 15. P. 977–982. https://doi.org/10.1007/BF02644689
  25. 25. Weiguo Z., Lin L., Taiwen H. et al. // China Foundry. 2009. 6. № 4. P. 300–304. https://www.oalib.com/paper/2970182
  26. 26. Alexandrov D.V., Malygin A.P. // Dokl. Earth Sci. 2006. 411. P. 1407–1411. https://doi.org/10.1134/S1028334X06090169
  27. 27. Alexandrov D.V., Nizovtseva I.G. // Int. J. Heat Mass Trans. 2008. 51. № 21–22. P. 5204–5208.https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.061
  28. 28. Alexandrov D.V., Malygin A.P. // Phys. Earth Planet. Int. 2011. 189. № 3-4. P. 134–141. https://doi.org/10.1016/j.pepi.2011.08.004
  29. 29. Alexandrov D.V., Malygin A.P. // Appl. Math. Modelling. 2013. 37. № 22. P. 9368–9378.https://doi.org/10.1016/j.apm.2013.04.032
  30. 30. Huppert H.E., Worster M.G. // Nature. 1985. 314. P. 703–707. https://doi.org/10.1038/314703a0
  31. 31. Kurz W., Fisher D.J. Fundamentals of Solidification. Aedermannsdorf: Trans Tech Publications, 1989.
  32. 32. Alexandrov D.V., Malygin A.P., Alexandrova I.V. // Ann. Glaciol. 2006. 44. P. 118–122. https://doi.org/10.3189/172756406781811213
  33. 33. Alexandrov D.V., Netreba A.V., Malygin A.P. // Int. J. Heat Mass Trans. 2012. 55. № 4. P. 1189–1196.https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.048
  34. 34. Huppert H.E. // J. Fluid Mech. 1990. 212. P. 209–240. https://doi.org/10.1017/S0022112090001938
  35. 35. Alexandrov D.V., Nizovtseva I.G. // Dokl. Earth Sci. 2008. 419. P. 359–362. https://doi.org/10.1134/S1028334X08020384
  36. 36. Alexandrov D.V., Bashkirtseva I.A., Malygin A.P., Ryashko L.B. // Pure Appl. Geophys. 2013. 170. P. 2273–2282. https://doi.org/10.1007/s00024-013-0664-z
  37. 37. Alexandrov D.V., Bashkirtseva I.A., Ryashko L.B. // Phil. Trans. R. Soc. A. 2018. 376. № 2113. P. 20170216 https://doi.org/10.1098/rsta.2017.0216
  38. 38. Makoveeva E.V., Alexandrov D.V., Bashkirtseva I.A., Ryashko L.B. // Eur. Phys. J.: Special Topics. 2023. 232. P. 1153–1163. https://doi.org/10.1140/epjs/s11734-023-00826-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library