RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Thermodynamic modeling of liquid binary alloys of the Al–Er system

PII
10.31857/S0235010624030054-1
DOI
10.31857/S0235010624030054
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
282-294
Abstract
The paper presents the results of a study of the thermochemical properties of the Al–Er system. The thermodynamic characteristics were evaluated (, , (), Cp(T) and Cp(liq)) for the intermetallic compounds Al3Er, Al2Er, AlEr, Al2Er3, AlEr2. The values of calculated based on the semiempirical Miedema model adapted for the group of Al–REM alloys were taken for calculations and amounted to –47.7, –58.4, –63, –55.2, –46.8 kJ/mol∙at, respectively. The mixing characteristics of liquid alloys of this system were evaluated by Terra software package for modeling the equilibrium states of heterogeneous inorganic systems with an extensive database of properties of individual substances. The model of ideal solutions of interaction products was used as a computational model. Modeling of equilibrium composition and properties of melts was carried out in the temperature range of 1900–2100 K, in an argon atmosphere at a total pressure of 0.1 MPa in the system. Comparison of the obtained results with the simulation results in the approximation of an ideal solution, allowed us to determine the excess integral thermodynamic properties of liquid alloys (Gibbs energy, enthalpy, and entropy). It is shown that in the studied temperature range, with an increase of temperature, there is a natural, though not significant, decrease in the values of these parameters by absolute value. It is established that the formation of liquid alloys of the Al–Er system is accompanied by significant heat release: the value of the integral enthalpy of mixing at a temperature T = 2100 K is –58.9 kJ/ mol∙at. When comparing the thermochemical properties of the Al–Er system with the binary systems Al–Y and Al–Sc studied by the same methods, it is shown that all energy curves pass through the extremum at XSc,Y,Er ≈ 0.5. The strongest interaction of the components is observed in the Al–Y system, (ΔHmix = –58.9 kJ/mol∙at), which is close enough to the maximum modulo value of the enthalpy of mixing in the Al–Er system. The weakest interaction is observed in the Al–Sc system (ΔHmix = –44.8 kJ/mol·at). The results obtained in this work provide a theoretical basis for further experimental study of erbium–containing aluminum alloys.
Keywords
алюминий эрбий расплав интерметаллические соединения модель Миедемы модель ИРПВ стандартная энтальпия образования избыточные термодинамические функции
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Guo Y., Liao H., Chang C., Yan X., Deng Z., Dong D., Qingkun Ch., Ying D., Min L., Effects of solute atoms re-dissolution on precipitation behavior and mechanical properties of selective laser melted Al–Mg–Sc–Zr alloys // Materials Science and Engineering: A. 2022. 854. 143870.
  2. 2. Saccone A., Cacciamani G., Maccio D., Borzone G., Ferro R. Contribution to the study of the alloys and intermetallic compounds of aluminium with the rare-earth metals // Intermetallics. 1998. 6. P. 201–215.
  3. 3. Попова Э.А., Шубин А.Б., Котенков П.В., Бодрова Л.Е., Долматов А.В., Пастухов Э.А., Ватолин Н.А. Лигатура Al–Sc–Zr и оценка ее модифицирующей способности // Расплавы. 2011. № 1. С. 11–15.
  4. 4. Котенков П.В., Попова Э.А., Гилев И.О., Игнатьев И.Э. Влияние титана и иттрия на структуру и свойства алюминиево-кремниевых сплавов. Сборник тезисов, материалы Двадцать пятой Всероссийской научной конференции студентов-физиков и молодых ученых (ВНКСФ-25, Крым). 2019. С. 422–424.
  5. 5. Котенков П.В., Попова Э.А., Гилев И.О. Влияние малых добавок Ti и Zr на структуру и свойства сплава Al–4 % Cu // Химическая физика и мезоскопия. 2019. 21. № 1. С. 23–28.
  6. 6. Watanabe Y. // Catalysis today. 2020. Pub Date: 2020-07-28. Withdrawn. https://doi.org/10.1016/j.cattod.2020.07.011
  7. 7. Luo F., Jiang A., Wang X. First-principles study on the effects of Er/Hf ratio on the properties of L12–Al3(Er,Hf) // Materials today communications. 2023. 36. 106632.
  8. 8. Yonggang L., Yinghui W., Lifeng H., Chunli G., Pengju H. Effect of erbium on microstructures and properties of Mg–Al intermetallic // Journal of Rare Earths. 2014. 32 №11. P. 1064–1072.
  9. 9. Xu L., Shi X., Xia D., Huang D., Tang H., Experimental investigation, and thermodynamic assessment of the Al–Er system // Calphad. 2022. 79. 102482.
  10. 10. Colinet C., Pasturel A. Molar enthalpies of formation of LnAl2 compounds // The Journal of Chemical Thermodynamics. 1985. 17. № 12. P. 1133–1139.
  11. 11. Sommer F., Keita M. Determination of the enthalpies of formation of intermetallic compounds of aluminium with cerium, erbium and gadolinium // Journal of the Less Common Metals. 1987. 136. №1. P. 95–99.
  12. 12. Лебедев В. А., Ямщиков В. И., Ямщиков Л.Ф. Термохимия сплавов редкоземельных и актиноидных элементов. Челябинск: Металлургия. 1989.
  13. 13. Miedema A.R., Boom R., De Boer F.R. On the heat of formation of solid alloys // Journal of the Less Common Metals. 1975. 41. № 2. P. 283–298.
  14. 14. Miedema R. On the heat of formation of solid alloys – II // Journal of the Less Common Metals. 1976. 46. № 1. P. 67–83.
  15. 15. Miedema A.R., De Boer F.R., Boom R. Model predictions for the enthalpy of formation of transition metal alloys // Calphad. 1977. 1(4). P. 341–359.
  16. 16. Boom R., De Boer F.R., Miedema A.R. On the heat of mixing of liquid alloys – I // Journal of the Less Common Metals. 1976. 45. № 2. P. 237–245.
  17. 17. Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных неорганических системах. М.: Металлургия. 1994.
  18. 18. Моисеев Г.К., Вяткин Г.П. Термодинамическое моделирование в неорганических системах. Челябинск: ЮрГУ. 1999.
  19. 19. Гилев И.О., Шубин А.Б., Котенков П.В. Термодинамические свойства расплавов бинарной системы Al–Y // Расплавы. 2021. № 5. С. 469–481.
  20. 20. Shubin A.B., Shunyaev K.Y., and Kulikova T.V. Problem of the thermodynamic properties of liquid aluminum alloys with scandium // Russian Metallurgy. 2008. P. 364–369.
  21. 21. Гилев И.О., Шубин А.Б., Котенков П.В. Термодинамические характеристики расплавов бинарной системы Al–Hf // Расплавы. 2021. № 1. С. 46–54.
  22. 22. Jin L., Kang Y-B, Chartrand P., Carlton D. Fuerst. Thermodynamic evaluation and optimization of Al–Gd, Al–Tb, Al–Dy, Al–Ho and Al–Er systems using a modified quasichemical model for the liquid // Calphad. 2010. 34. P. 456–466.
  23. 23. Моисеев Г.К., Ватолин Н.А., Маршук Л.А., Ильиных Н.И. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ. Альтернативный банк данных АСТРА.ОWН. Екатеринбург: УрО РАН. 1997.
  24. 24. Моисеев Г.К., Ватолин Н.А. Некоторые закономерности изменения и методы расчета термохимических свойств неорганических соединений. Екатеринбург: УрО РАН. 2001.
  25. 25. Kulikova T., Mayorova A., Shubin A., Bykov V., Shunyaev K. Bismuth–indium system: thermodynamic properties of liquid alloys // Kovové materiály (Metallic Materials). 2015. 53. №3. P. 133–137.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library