RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Development of laser felling modes of gas-thermal coating

PII
10.31857/S0235010624040092-1
DOI
10.31857/S0235010624040092
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
451-465
Abstract
The use of copper and its alloys to create parts for metallurgical equipment is associated with an increase in abrasive wear and high-temperature corrosion. In this regard, there is a need to apply a protective coating. In particular, to prevent wear and premature chipping of the metal of copper tuyeres, the surface is hardened with a coating of zirconium dioxide stabilized with yttria oxide by thermal spraying in an air atmosphere. Due to the difference in the coefficient of thermal expansion of copper (at T = 300 K: 16.7 µm/m оС and at T = 750 K: 19.7 µm/m оС) and its low resistance to gas corrosion, the application of zirconium oxide (produced by a preapplied intermediate layer that plays a role in matching the coefficient of thermal expansion (CTE) between the copper base and the ceramic coating. In addition, the intermediate layer protects copper from gas corrosion. In this case, The use of copper and its alloys to create parts for metallurgical equipment is associated with an increase in abrasive wear and high-temperature corrosion. In this regard, there is a need to apply a protective coating. In particular, to prevent wear and premature chipping of the metal of copper tuyeres, the surface is hardened with a coating of zirconium dioxide stabilized with yttria oxide by thermal spraying in an air atmosphere. Due to the difference in the coefficient of thermal expansion of copper (at T = 300 K: 16.7 pm/m °G and at T = 750 K: 19.7 pm/m оG) and its low resistance to gas corrosion, the application of zirconium oxide (produced by a pre-applied intermediate layer that plays a role in matching the coefficient of thermal expansion (CTE) between the copper base and the ceramic coating. In addition, the intermediate layer protects copper from gas corrosion. In this case, nickel-based alloys were used as intermediate layers. The use of nickel as the basis of intermediate layers is due to the fact that copper and nickel form a continuous series of solid solutions, such as cupronickel or monel metal-like structures. This, in turn, assumes a smooth transition of thermophysical properties from copper to nickel alloy. To ensure increased adhesion of the transition layer to copper by increasing the area of mutual contact between copper and the sublayer (dagger penetration) and significantly increasing the homogeneity of the material of the intermediate layer made of a nickel alloy, laser melting of the intermediate sublayer (Ni–B–Si system) was used on a laser complex based on laser LS-5 with a power of 5 kW with a KUKA KR-60HA robot in an argon atmosphere. To test the modes, experiments were carried out on copper samples of a flat shape and a body of rotation. The optimal parameters for the process of melting flat samples were: processing speed 33 mm/s, power from 400 to 3900 W, focal length from 200 to 230 mm, pitch between tracks: 0.25, 0.5 and 1 mm. The optimal parameters for the process of melting rotating samples were: laser radiation power 400–450 W, processing step 0.125; 0.5, focal length from 200 to 210 mm.
Keywords
медные фурмы технология нанесения покрытий наплавка плазменное напыление лазерное легирование
Date of publication
01.04.2024
Year of publication
2024
Number of purchasers
0
Views
58

References

  1. 1. Жук В.И. Анализ тепловой работы воздушных фурм доменной печи // Вестник Приазовского государственного технического университета. 2002. № 12. С. 25–30.
  2. 2. Li G., Huang P., Cheng P., Wu W., Zhang Y., Pang Zh., Xu Q., Zhu K., Zou X., Li R. // Engineering Failure Analysis. 2023. 153. 107537 https://doi.org/10.1016/j.engfailanal.2023.1075373.
  3. 3. Chai Y.-F., Zhang J., Ning X.-J., Wei G.-Y., Chen Y.-T. // High Temperature Materials and Processes. 2015. № 4. https://doi.org/10.1515/htmp-2014-0149
  4. 4. Олейник К.И., Бахтеев И.С., Русских А.С., Осинкина Т.В., Жилина Е.М. Наплав- ление многокомпонентных сплавов, содержащих тугоплавкие металлы // Расплавы. 2024. № 1. С. 106–113.
  5. 5. Маншилин А.Г., Складановский Е.Н., Нецветов В.И., Туник О.А. Дутьевая фурма доменной печи и способ нанесения зашитного покрытия на дутьевую фурму до- менной печи. Патент РФ №2235789 РФ. Заяв. 04.11.2002. Опубл. 27.05.2004.
  6. 6. Самедов Э.М. Повышение износостойкости воздушных фурм доменных печей пу- тем создания защитного алюминиевого газотермического покрытия. Дисс…канд. техн. наук: 05.02.2013. Москва, 2007.
  7. 7. Материалы в машиностроении. Машиностроение: Энциклопедия / Под ред. Фро- лова К.В. М.: Машиностроение, 1994.
  8. 8. Комоликов Ю.И., Кащеев И.Д., Хрустов В.Р. // Новые огнеупоры. 2016. № 9. С. 59–62. https://doi.org/10.17073/1683-4518-2016-9-59-62
  9. 9. Huang, Hongshou & Singh, Surinder & Juhasz, Albert & Roccisano, Anthony & Ang, Andrew & Stanford, Nikki. (2023). Influence of Copper Distribution in Thermally Sprayed Cu-Bearing Coatings on Corrosion and Microbial Activity. 10.2139/ssrn.4613064.
  10. 10. Hu, Dengwen & Yan, Liu & Chen, Hui & Liu, Jin & Mengchao, Wang & Deng, Lin. (2021). Microstructure and properties of Ta-reinforced NiCuBSi + WC composite coating deposited on 5Cr5MoSiV1 steel substrate by laser cladding. Optics & Laser Technology. 142. 107210.10.1016/j.optlastec.2021.107210.
  11. 11. Павлов, А. Ю. Основы газотермического напыления защитных покрытий : учебное пособие / А. Ю. Павлов, В. В. Овчинников, А. Д. Шляпин. - Москва ; Вологда : Инфра-Инженерия, 2020. - 300 с. - ISBN 978-5-9729-0500-3.
  12. 12. Gu, D & Meiners, Wilhelm & Wissenbach, K & Poprawe, Reinhart. (2012). Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews. 57. 133-164. 10.1179/1743280411Y.0000000014.
  13. 13. Kefeni K., Msagati T., Alfred M., Mamba B. Ferrite nanoparticles: Synthesis, charac- terisation and applications in electronic device // Materials Science and Engineering: B. 2017. 215. Р. 37–55.
  14. 14. Wang T., Zhang J., Zhang Y., Chen S., Luo Z., Wu J., Zhu L., Lei J. Improving wear and corrosion resistance of LDEDed CrFeNi MEA through addition of B and Si // J. Alloy. Compd. 2023. 968. 172223.
  15. 15. Lyu Y., Sun Y., Yang Y. Non-vacuum sintering process of WC/W2C reinforced Nibased coating on steel // Metals and Materials International. 2016. 22. Р. 311–318.
  16. 16. Kılıçay K., Buytoz S., Ulutan M. Microstructural and tribological properties of induc- tion cladded NiCrBSi/WC composite coatings // Surface and Coatings Technology. 2020. 397. 125974.
  17. 17. Логинов Ю.Н. Медь и деформируемые медные сплавы: Учеб. пособие. УПИ. Ека- теринбург: УГТУ-УПИ, 2004.
  18. 18. Лякишев Н.П., Плинер Ю.Л., Лаппо С.И. Борсодержащие стали и сплавы. М.: Метал лургия, 1986.
  19. 19. О. Г. Девойно. Технология формирования износостойких покрытий на железной основе методами лазерной обработки. Минск: БНТУ, 2020.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library