- PII
- 10.31857/S0235010624050047-1
- DOI
- 10.31857/S0235010624050047
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 5
- Pages
- 501-509
- Abstract
- The rapid growth of demand for stainless steel and, accordingly, its production, which occurred in the second half of the 20th century and continues till today, makes it necessary to conduct studies of the properties of oxide systems that will contribute to the improvement of metallurgical production technologies for such steel. Therefore, in this paper, using the method of simplex grids for experimental planning and vibration viscometry, a study was conducted of the effect of basicity and boron oxide content on the viscosity and crystallization onset temperature of slags of the СаО–SiO2–B2O3–12%Cr2O3–3%Аl2O3–8%МgO oxide system formed during the reduction period of the production of low-carbon stainless steel by the argon-oxygen decarbonization (AOD) process, which is currently the main method for producing corrosion-resistant steel. The introduction of boron oxide into AOD-slags is a possible solution to the problem of instability of the physical properties of slags during smelting, caused by the volatility of fluorspar fluorides, traditionally used as a flux, and compliance with increasingly stringent environmental requirements by eliminating the formation of toxic fluorine compounds. Based on the results of experimental studies of the viscosity of slags of the studied oxide system depending on the chemical composition and temperature, approximating mathematical models in the form of a reduced third-degree polynomial are constructed. Graphically, the results of mathematical modeling are presented in the form of “composition – property” diagrams, which allow quantitatively determining the effect of temperature and chemical composition of the slags under study on viscosity and their composition on the crystallization onset temperature. It is noted that at 1600 and 1650°C, an increase in the boron oxide content in the slag from 3.0 to 6.0% has a favorable effect on the fluidity of the formed slags in the basicity range of 1.0-2.5. For example, an increase in the boron oxide concentration from 3.0 to 6.0% ensures a decrease in the viscosity of the slags from 2.0 to 0.5 Pa s at a temperature of 1600°C and from 0.4 to 0.3 Pa s at a temperature of 1650°C in the region of increased basicity up to 2.0-2.5.
- Keywords
- АКР-процесс нержавеющая сталь восстановительный период шлак оксиды бора и хрома вязкость температура начала кристаллизации
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Stainless Steel in Figures 2020 // ISSF. URL: https://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSF_Stainless_Steel_in_Figures_2020_English_public_version.pdf (дата доступа: 2024-06-06).
- 2. Атлас шлаков: справ. изд. Пер. с нем. Москва: Металлургия, 1985. 208 с.
- 3. F. Shahbazion, Du. Sichen, S. Seetharaman. The effect of addition of Al2O3 on the viscosity of CaO-”FeO”-SiO2-CaF2 slags // ISIJ Internation. 2002. 42. № 2. P. 155–162.
- 4. J.H. Park, D.I. Min, H.S. Song. The effect of CaF2 on the viscosities and structures of CaO-SiO2-(MgO)-CaF2 slags // Metallurgical and Materials Transactions B. 2002. 33. № 5. P. 723–739.
- 5. Д.Я. Поволоцкий, В.Е. Рощин, В.П. Грибанов, А.В. Речкалова, А.А. Гайнуллин. Влияние SiO2 на летучесть шлаков системы MgO-Al2O3-CaF2 // Изв. вузов. Черная металлургия. 1982. № 8. С. 39–41.
- 6. Д.А. Дюдкин, В.В. Кисиленко. Внепечная металлургия стали. Т.3. Москва: Теплотехник, 2010. 544 c.
- 7. А.А. Акбердин, И.С. Куликов, В.А. Ким, А.К. Надырбеков, А.С. Ким. Физические свойства расплавов системы CaO-Al2O3-SiO2-MgO-CaF2. М.: Металлургия, 1987. 144 с.
- 8. А.И. Зайцев, Б.М. Могутнов, Е.Х. Шахпазов. Физическая химия металлургических шлаков. М.: Интерконтакт, Наука, 2008. 352 с.
- 9. W. Hong-ming, L. Gui-rong, L. Bo, Z. Xue-jun, Y. Yong-qi. Effect of B2О3 on Melting temperature of CaO-Based Ladle Refining Slag // ISIJ International. 2010. 17. № 10. P. 18–22.
- 10. Бабенко А.А., Истомин С.А., Потопопов Е.В., Сычев А.В., Рябов В.В. Вязкость шлаков системы СaО–SiO2–Al2O3–MgO–B2O3 // Известия вузов. Черная металлургия. 2014. 57. № 2. P. 41–43.
- 11. H.M. Wang, T.W. Zhang, H. Zhu, Y.Q. Yan, Y.N. Zhao. Effect of B2O3 and CaF2 on viscosity of ladle refining slag // Advanced Materials Research. 2011. 295-297. P. 2647–2650.
- 12. A.B. Fox, K.C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia, J. Gisby. Development of fluoride-free fluxes for billet casting // ISIJ International 2005. 45. № 7. P. 1051–1058.
- 13. B.X. Lu, W.L. Wang, J. Li, H. Zhao, D.Y. Huang. Effects of Basicity and B2O3 on the Crystallization and Heat Transfer Behaviors of Low Fluorine Mold Flux for Casting Medium Carbon Steels // Metallurgical and Materials Transactions B. 2013. 44. № 2. P. 365–377.
- 14. J. Wei, W.L. Wang, L.J. Zhou, D.Y. Huang, H. Zhao, F.J. Ma. Effect of Na2O and B2O3 on the Crystallization Behavior of Low Fluorine Mold Fluxes for Casting Medium Carbon Steels // Metallurgical and Materials Transactions B. 2014. 45. № 2. P. 643–652.
- 15. W. Wang, D. Cai, L. Zhang. A Review of Fluorine-free Mold Flux Development // ISIJ International. 2018. 58. № 11. P. 1957–1964.
- 16. G.-R. Li, H.-M. Wang, Q.-X. Dai, Y.-T. Zhao, J.-S. Li. Physical Properties and Regulating Mechanism of Fluoride-Free and Harmless B2O3-Containing Mould Flux // Journal of Iron and Steel Research International. 2007. 14. P. 25–28.
- 17. Q. Li, Sh. Yang, Y. Zhang, Zh. An, Zh.Ch. Guo. Effects of MgO, Na2O, and B2O3 on the viscosity and structure of Cr2O3-bearing CaO-SiO2-Al2O3 slags // ISIJ International. 2017. 57. № 4. P. 689–696.
- 18. Кель И.Н., Жучков В.И., Сычев А.В. Применение борсодержащих материалов в черной металлургии // Черная металлургия. Бюллетень научно-технической и экономической информации. 2018. 1421. № 5. С. 48–54.
- 19. В.А. Ким, Э.И. Николай, А.А. Акбердин и др. Планирование эксперимента при исследовании физико-химических свойств металлургических шлаков // Методическое пособие. Алма-Ата: Наука. 1989. 116 с.
- 20. С.В. Штенгельмейер, В.А. Прусов, В.А. Богечов. Усовершенствование методики измерения вязкости вибрационным вискозиметром // Заводская лаборатория. 1985. № 9. С. 56–57.
- 21. В.Г. Воскобойников, Н.Е. Дунаев, А.Г. Михалевич, Т.И. Кухтин, С.В. Штенгельмейер. Свойства доменных шлаков: справочник. М.: Металлургия, 1975. 180 с.