RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Electrodeposition of ordered silicon fibers from the KI–KF–KCl–K2SiF6 melt for lithium-ion power sources

PII
10.31857/S0235010624050098-1
DOI
10.31857/S0235010624050098
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
554-564
Abstract
The possibility of using silicon-based anodes in lithium-ion power sources is actively investigated due to the increased lithium capacitance of silicon. This work reports the preparation of submicron silicon fibers on glassy carbon in KI–KF–KCl–K2SiF6 melt at 720°C. For this purpose, the parameters of silicon electrodeposition in the form of fibers were determined by cyclic voltammetry, experimental batches of ordered silicon fibers with an average diameter from 0.1 to 0.3 μm were obtained under galvanostatic electrolysis conditions, and using the obtained silicon fibers, anode half-cells of lithium-ion current sources were fabricated and their electrochemical behavior and behavior under multiple lithiation and delithiation were studied. By means of voltammetric studies, it is observed that charging and discharging of the anode based on the obtained silicon fibers occurs at potentials from 0.2 to 0.05 V and from 0.2 to 0.5 V, respectively. Cycling of electrodeposited silicon fibers in anode half-cells of lithium-ion power source was carried out. Depending on the charge current, the discharge capacity ranged from 200 to 500 mAh/g at Coulomb efficiency of 98–100 %. Also, multiple cycling of the sample of lithium-ion power source with a lithium counter electrode was performed. In the course of 800 cycling with current 0.5C, the discharge capacity of the sample decreased from 165 to 65 mAh/g. Scanning electron microscopy shows the volumetric expansion of the of silicon fibers during cycling.
Keywords
кремний расплавленные соли электроосаждение волокна литирование литий-ионный источник тока
Date of publication
01.05.2024
Year of publication
2024
Number of purchasers
0
Views
55

References

  1. 1. Ли С.А., Рыжикова Е.В., Скундин А.М. Проблемы оптимизации соотношения активных масс в электродах литийионных аккумуляторов // Электрохимическая энергетика. 2020. 20. № 2. С. 68–72.
  2. 2. Суздальцев А.В., Гевел Т.А., Парасотченко Ю.А., Павленко О.Б. Краткий обзор результатов использования электроосажденного кремния для устройств преобразования и накопления энергии // Расплавы. 2023. № 1. C. 99–108.
  3. 3. Чемезов О.В., Исаков А.В., Аписаров А.П., Брежестовский М.С., Бушкова О.В., Баталов Н.Н., Зайков Ю.П., Шашкин А.П. Электролитическое получение нановолокон кремния из расплава KCl–KF–K2SiF6–SiO2 для композиционных анодов литий-ионных аккумуляторов // Электрохимическая энергетика. 2013. 13. № 4. С. 201–204.
  4. 4. Кулова Т.Л. Новые электродные материалы для литий-ионных аккумуляторов (Обзор) // Электрохимия. 2013. 49. № 1. C. 1–25.
  5. 5. Журавлев В.Д., Щеколдин С.И., Андрюшин С.Е., Шерстобитова Е.А., Нефедова К.В., Бушкова О.В. Электрохимические характеристики и фазовый состав литиймарганцевой шпинели с избытком лития Li1+xMn2O4 // Электрохимическая энергетика. 2020. 20. № 3. С. 157–170.
  6. 6. Gevel T., Zhuk S., Leonova N., Leonova A., Trofimov A., Suzdaltsev A., Zaikov Yu. Electrochemical synthesis of nano-sized silicon from KCl–K2SiF6 melts for powerful lithium-ion batteries // Applied Sciences. 2021. 11. 10927.
  7. 7. Кайбичев А.В., Кайбичев И.А. Особенности очистки технического кремния при плавке в гелии с воздействием на расплав электрического поля на молибденовом и графитовом электроде // Расплавы. 2019. № 3. С. 258–264.
  8. 8. Dian J., Macek A., Nižňanský D., Němec I., Vrkoslav V., Chvojka T., Jelínek I. SEM and HRTEM study of porous silicon – relationship between fabrication, morphology and optical properties // Applied Surface Science. 2004. 238. Р.169–174.
  9. 9. Зайков Ю.П., Жук С.И., Исаков А.В., Гришенкова О.В., Исаев В.А. Электроосаждение кремния из расплава KF–KCl–KI–K2SiF6 // Расплавы. 2016. № 5. С. 441–454.
  10. 10. Кузнецова С.В., Долматов B.C., Кузнецов С.А. Вольтамперометрическое исследование электровосстановления комплексов кремния в хлоридно-фторидном расплаве // Электрохимия. 2009. 45. С. 797–803.
  11. 11. Гевел Т.А., Жук С.И., Устинова Ю.А., Суздальцев А.В., Зайков Ю.П. Электровыделение кремния из расплава KCl–K2SiF6 // Расплавы 2021. № 2. С.187–198.
  12. 12. Yasuda K., Kato T., Norikawa Yu., Nohira T. Silicon electrodeposition in a water-soluble KF–KCl molten salt: Properties of Si films on graphite substrates // J. Electrochem. Soc. 2021. 168. 112502.
  13. 13. Zaykov Y.P., Zhuk S.I., Isakov A.V., Grishenkova O.V., Isaev V.A. Electrochemical nucleation and growth of silicon in the KF–KCl–K2SiF6 melt // J. Solid State Electrochem. 2015. 19. Р. 1341–1345.
  14. 14. Gevel T., Zhuk S., Suzdaltsev A.V., Zaikov Yu.P. Study into the possibility of silicon electrodeposition from a low-fluoride KCl–K2SiF6 melt // Ionics. 2022. 28. Р. 3537–3545.
  15. 15. Dong Y., Slade T., Stolt M.J., Li L., Girard S.N., Mai L., Jin S. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3 // Angew. Chem. 2017. 129. Р. 14645–14649.
  16. 16. Juzeliunas E., Fray D.J. Silicon electrochemistry in molten salts. Chemical Reviews. 2020. 120. Р. 1690–1709.
  17. 17. Laptev M.V., Isakov A.V., Grishenkova O.V., Vorob’ev A.S., Khudorozhkova A.O., Akashev L.A., Zaikov Y.P. Electrodeposition of thin silicon films from the KF–KCl–KI–K2SiF6 melt // J. Electrochem. Soc. 2020. 167. 042506,
  18. 18. Laptev M.V., Khudorozhkova A.O., Isakov A.V., Grishenkova O.V., Zhuk S.I., Zaikov Y.P. Electrodeposition of aluminum-doped thin silicon films from a KF–KCl–KI–K2SiF6–AlF3 melt// J. Serb. Chem. Soc. 2021. 86. Р. 1075–1087.
  19. 19. Леонова Н.М., Леонова А.М., Баширов О.А., Лебедев А.С., Трофимов А.А., Суздальцев А.В. Аноды на основе С/SiC для литий-ионных источников тока // Электрохимическая энергетика. 2023. 23. № 1. Р. 41–50.
  20. 20. Casimir A., Zhang H., Ogoke O., Amine J., C., Lu J., Wu G. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation // Nano Energy. 2016. 21. Р. 359–376.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library