- Код статьи
- 10.31857/S0235010624060093-1
- DOI
- 10.31857/S0235010624060093
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 6
- Страницы
- 676-694
- Аннотация
- В данной работе представлен обзор данных по растворимости оксидов редкоземельных элементов в галогенидных расплавах щелочных и щелочноземельных металлов. Наибольшая растворимость оксидов редкоземельных элементов наблюдается во фторидных расплавах, наименьшая – в хлоридных. Работ, посвященных изучению растворимости оксидов редкоземельных элементов в смешанных хлоридно-фторидных расплавах, крайне мало. Растворимость оксидов редкоземельных элементов уменьшается в ряду La-Ce-Pr-Nd-Gd. Наибольшее количество работ посвящено изучению растворимости оксидов неодима, лантана и церия. Практически отсутствуют данные по растворимости «тяжелых» оксидов редкоземельных элементов (от Tb до Lu) в галогенидных расплавах.
- Ключевые слова
- растворимость оксиды РЗЭ галогенидные расплавы
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 11
Библиография
- 1. Gupta C.K. Extractive metallurgy of rare earths. International Materials Reviews, 1992, 37(1): 197–248.
- 2. Goonan T.G. Rare earth elements – End use and recyclability. U.S. Geological Survey Scientific Investigations Report. – 2011.
- 3. Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 2019, 10(4): 1285–1303.
- 4. Hong F. Rare Earth: Production, trade and Demand. Journal of Iron and Steel Research International, 2006, 13(3): p. 33–38.
- 5. Abbasalizadeh A. Use of iron reactive anode in electrowinning of neodymium from neodymium oxide. Electrochimica Acta, 2019, 310: 146–152.
- 6. Kushkhov Kh.B. Electrochemical synthesis of nanosized powders of neodymium and praseodymium hexaborides and ternary compounds based on neodymium (praseodymium), boron and iron group metals from chloride-fluoride melts. Powder Metallurgy аnd Functional Coatings, 2014, 1: 3–8.
- 7. Inv. 2540277 RF Int.C1 C01B 35/04 Electrolytic method of obtaining nanosized cerium hexaboride powder / Kushkhov Kh. B. [etc.], RF; Proprietor: Federal’noe gosudarstvennoe bjudzhetnoe obrazovatel’noe uchrezhdenie vysshego (45) Date of publication: 10.02.2015 Bull. № 4 Mail address: 360004, KBR, g.Nal’chik, ul. Chernyshevskogo, 173, Patentnyj otdel KBGU professional’nogo obrazovanija KabardinoBalkarskij gosudarstvennyj universitet im. Kh.M. Berbekova (KGBU) (RU) – filing 27.09.2013; publication 10.02.2013.
- 8. Inv. 2781278 RF Int.C1 С01В 35/04 Electrochemical method for obtaining microdisperse powders of lanthanide group metal hexaborides doped with calcium / Filatov E. S. [etc.] Federalnoe gosudarstvennoe biudzhetnoe uchrezhdenie nauki Institut vysokotemperaturnoi elektrokhimii Uralskogo otdeleniia Rossiiskoi akademii nauk (IVTE UrO RAN) (RU) – filing 17.12.2021; publication 11.10.2022.
- 9. Kaneko A. ChemInform Abstract: electrochemistry of rare Earth fluoride Molten Salts. ChemInform, 1993, 24: 44-46.
- 10. Castrillejo Y. Solubilization of rare earth oxides in the eutectic LiCl–KCl mixture at 450°C and in the equimolar CaCl2–NaCl melt at 550°C. Journal of Electroanalytical Chemistry, 2003, 545: 141–157.
- 11. Yan Y. The solubility of rare Earth with variable Valent and electrochemical Behavior in LiCl–KCl–AlCl3 Melts. Energy Procedia, 2013, 39: 408–414.
- 12. Raiman S.S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts. Journal of Nuclear Materials, 2018, 511: 523-535.
- 13. Sridharan K. Corrosion in Molten Salts. Molten Salts Chemistry, 2013, p. 241-267.
- 14. Guo S. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Progress in Materials Science, 2018, 97: 448-487.
- 15. Gourishankar K.V. Thermodynamics of mixed oxide compounds, Li2O-Ln2O3 (Ln=Nd or Ce). Metallurgical and Materials Transactions B, 1997, 28: 1103–1110.
- 16. Kato T. Solubility of Pu and rare-earths in LiCl-Li2O melt. Radiochimica Acta, 2009, 97: 183–186.
- 17. Korzun I.V. Thermal analysis of the oxide–chloride systems GdCl3–Gd2O3 and GdCl3–KCl–Gd2O3. Journal of Thermal Analysis and Calorimetry, 2021, 144: 1343–1349.
- 18. Chukhvantsev D.O. Electrochemical synthesis of Rare-earth Hexaborides in Chloride–oxide Melts. Inorganic Materials, 2023, 59: 1356–1362.
- 19. Castrillejo Y. Use of electrochemical techniques for the study of solubilization processes of cerium–oxide compounds and recovery of the metal from molten chlorides. Journal of Electroanalytical Chemistry, 2002, 522: 124–140.
- 20. Shchetinskiy A.V. Interaction of neodymium Containing chloride Melts with oxygen Species. ECS Meeting Abstracts, 2018, 53: 1848–1848.
- 21. Cho Y.J. Characteristics of oxidation Reaction of Rare-earth chlorides for precipitation in LiCl-KCl molten Salt by oxygen Sparging. Journal of Nuclear Science and Technology, 2006, 43: 1280–1286.
- 22. Ivanov A.B. Solubility of REM oxides in Chloride–fluoride and fluoride Melts. Russian Metallurgy (Metally), 2022, 2: 65–68.
- 23. Porter B. Determination of Oxide Solubility in Molten Fluorides. U.S. Department of the Interior, Bureau of Mines, Washington, DC, 1961.
- 24. Bratland D. On the possible electrowinning of Yt-Al alloys. The solubility of yttria and of alumina in molten mixtures of yttrium fluoride and lithium fluoride. Light Metals, 1976, 1: 183–201.
- 25. R.G. Reddy. Solubility and thermodynamic properties of Y2O3 in LiF-YF3 melts. Metallurgical and Materials Transactions B, 1994, 25: 91–96.
- 26. Zhu X. Solubility of RE2O3 (RE = la and Nd) in light rare earth fluoride molten salts. Journal of Rare Earths, 2018, 36: 765–771.
- 27. Pshenichny R.N. Interaction of rare-earth oxides with binary molten mixtures of zirconium and alkali metal fluorides. Russian Journal of Inorganic Chemistry, 2012, 57: 115–119.
- 28. Stefanidaki E. Oxide solubility and raman spectra of NdF3–LiF–KF–MgF2–Nd2O3 melts. Journal of the Chemical Society, Dalton Transactions, 2002, р. 2302–2307.
- 29. Ambrová M. On the solubility of lanthanum oxide in molten alkali fluorides. Journal of Thermal Analysis and Calorimetry, 2008, 91: 569–573.
- 30. Remazeilles C. In-situ electrochemical oxide monitoring in LiF-NdF3-Nd2O3: application to Nd2O3 solubility determination. Journal of Electroanalytical Chemistry, 2021, 893: 115334.
- 31. Takeda O. Solubilities of RE2O3 in REF3-LiF (RE = Nd, Dy) at 1473 K. Journal of Sustainable Metallurgy, 2022, 8: 1498–1508.
- 32. Du S. Solubility of rare earth oxides in alkali and alkali-earth metal fluoride melts. Chinese Rare Earths, 1987, 19878(2): 59–62.
- 33. Wu W. Nd2O3 solubility in fluoride melt. Chinese Rare Earths, 1991, 12(3): 34–37.
- 34. Dewing E.W. The chemistry of solutions of CeO2 in cryolite melts. Metallurgical and Materials Transactions B, 1995, 26: 81–86.
- 35. Yang Q. Electrochemical separation of lanthanum Oxide in molten FLiNaK Salt. Nuclear Technology, 2020, 206: 1769–1777.