RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

SURFACE PROPERTIES OF OXIDE-FLUORIDE COMPOUNDS FORMED DURING THE ALUMINOTHERMIC SYNTHESIS OF HIGH-ENTROPY ALLOYS

PII
10.31857/S0235010625030033-1
DOI
10.31857/S0235010625030033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
205-217
Abstract
This work presents thermodynamic modeling and experimental study of the oxide-fluoride phase formed during the production of high-entropy refractory, lightweight alloys of the Al-Ti-Zr-V-Nb system by the method of combined aluminothermic reduction from metal oxides of titanium, zirconium, niobium and vanadium. The aim of the work was to determine the optimal conditions for obtaining such alloys and to find the characteristics of phase separation. Modeling showed that the formation of a lightweight and refractory alloy requires temperatures of at least 1600C and an aluminum content in the range of 15 to 40 atomic percent. In this case, it is recommended to use a small excess of aluminum in the charge to ensure the transition of some aluminum to the metallic phase. Calculations of surface tension and density showed a significant difference between the metallic and oxide-fluoride phases, which contributes to the settling of the metallic melt to the bottom of the crucible and the formation of a clear separation boundary between the two phases. Interfacial tension in the range of 1000-1600 mJ/m ensures minimal wetting of the slag by the metal and reduces the amount of non-metallic inclusions in the metal, which has a positive effect on the quality of the final product. It is noted that an increase in the number of components in the melt complicates the selection of empirical coefficients, which limits the accuracy of the calculation by the empirical method. Chemical analysis of the oxide-fluoride phase after the experiment confirmed the presence of zirconium and titanium oxides in it, which increase the surface tension and density compared to the calculated values. However, these parameters remain below the corresponding values of the metallic phase, which ensures effective phase separation and the formation of a solid metal ingot without excessive adhesion to the oxide-fluoride phase. The results obtained demonstrate the promise of the selected conditions for the production of high-quality high-entropy alloys and can be used for further evaluation calculations and optimization of technological processes.
Keywords
тугоплавкие ВЭС оксидно - фторидный расплав поверхностные свойства плотность
Date of publication
12.05.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Филатов А.А. и др. Способ получения лигатуры AlZr15 из оксидов // Уральская школа молодых металловедов : материалы XVIII Международной научно-технической Уральской школы-семинара металловедов - молодых ученых, Екатеринбург, 21-23 октября 2017 года / Ответственный редактор: А. А. Попов; Министерство образования и науки. 2017. P. 384-388.
  2. 2. Zhilina E.M., Krasikov S.A. Surface tension of a titanium-containing oxide-fluoride melt calculated by the polymer theory // Russ. Metall. Maik Nauka-Interperiodica Publishing. 2017. 2017. № 8. P. 642-643.
  3. 3. Tyushnyakov S.N. et al. Metallothermic Reduction of Natural Cassiterite // Metallurgist. 2021. 65. № 7-8. P. 746-759.
  4. 4. Mityushova Y.A. et al. Thermodynamic Estimation of the Formation of a High-Entropy Al-Nb-Ti-V-Zr Alloy // Russ. Metall. 2021. 2021. № 2. P. 187-191.
  5. 5. Zhilina E.M. et al. Possibility of obtaining refractory high-entropy AlTiZrVNb alloys from metal oxides // Russ. Chem. Bull. Springer, 2023. 72. № 4. P. 895-901.
  6. 6. Ikornikov D.M. et al. Effect of Doping with Si-B on the Structure of Cast Mo-Nb-Cr-V-Ti-Al High-Entropy Alloy Produced by Gravity-Assisted SHS Metallurgy // Int. J. Self-Propagating High-Temperature Synth. Pleiades Publishing, 2024. 33. № 4. P. 330-335.
  7. 7. Kirakosyan H. et al. The preparation of high-entropy refractory alloys by aluminothermic reduction process // AIP Conf. Proc. American Institute of Physics Inc., 2024. 2989. № 1.
  8. 8. Kaya F. et al. Thermochemical Modeling-Assisted Synthesis of AlxCoCrFeNiMn (0.5 ≤ x ≤ 3) High-Entropy Alloys via Combustion Method for Soft Magnetic Applications // Mining, Metall. Explor. Springer Science and Business Media Deutschland GmbH, 2025. 42. № 2. P. 465-477.
  9. 9. Li R.X., Liaw P.K., Zhang Y. Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides // Mater. Sci. Eng. A. Elsevier, 2017. 707. P. 668-673.
  10. 10. HSC Chemistry for Windows - Chemical Reaction and Equilibrium Software with extensive Thermochemical Database, product of Outokumpu Research, Oy, Pori, Finland [Electronic resource]. URL: www.outotec.com/hsc. Загл. с экрана.
  11. 11. Balakirev V.F. et al. Joint Metallothermic Reduction of Titanium and Rare Refractory Metals of Group V // Russ. J. Non-Ferrous Met. Pleiades journals, 2021. 62. № 2. P. 190-196.
  12. 12. Арсентьев П.П. и др. Экспериментальные работы по теории металлургических процессов. М.: Металл. 1989. 288 p.
  13. 13. Мурач Н.Н. Алюминотермия титана. М.: ЦИИНцв. 1958. 51 p.
  14. 14. Allibert M. et al. Slag Atlas // Slag Atlas. 1995. P. 616.
  15. 15. Hara S., Ogino K. Density of CaF2-CaO-Al203 melts for electroslag remelting // Can. Metall. Q. 1981. 20. № 1. P. 113-116.
  16. 16. Григорян В.А., Белянчиков Л.Н., Стомахин. А.Я. Теоретические основы электросталеплавильных процессов. Москва: Металлургия, 1987. 272 p.
  17. 17. Линчевский Б.В. Техника металлургического эксперимента. Москва: Наука., 1979. 256 p.
  18. 18. Арсентьев П.П., Коледов Л.А. Металлические расплавы и их свойства. М.: Металл. 1976. 376 p.
  19. 19. Попель С.И. Поверхностные явления в расплавах. М.: Металл. 1994. 440 p.
  20. 20. Попель С.И., Сотников А.И., Бороненков В.Н. Теория металлургических процессов: учебное пособие для вузов. М.: Металл. 1986. 463 p.
  21. 21. Попель С.И. Теория металлургических процессов. М.: ВИНИТИ. 1971. 132 p.
  22. 22. Novakovic R. et al. Surface, dynamic and structural properties of liquid Al - Ti alloys // Appl. Surf. Sci. 2012. 258. P. 3269-3275.
  23. 23. Kotenkov P.V., Cherepanova L.A., Sterkhov E.V. Thermal and Structural Stability of the TiZrHfNbTa Solid Solution // Russ. Metall. Pleiades Publishing, 2024. 2024. № 4. P. 834-840.
  24. 24. Xin J. et al. Surface tension calculation of molten slag in SiO2-Al2O3-CaO-MgO systems based on a statistical modelling approach // ISIJ Int. 2019. 59. № 5. P. 759-767.
  25. 25. Nakajima K. Estimation of surface tension for multicomponent silicate melts // Tetsu-to-Hagané. 1994. 80. № 8. P. 599-604.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library