ОХНМРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

ВЛИЯНИЕ ГИДРОКАРБОНАТНОЙ ОБРАБОТКИ НА КОРРОЗИОННУЮ СТОЙКОСТЬ МЕДИ, НИКЕЛЯ И НЕРЖАВЕЮЩИХ СТАЛЕЙ В РАСПЛАВЕ NаOH

Код статьи
10.31857/S0235010625030079-1
DOI
10.31857/S0235010625030079
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 3
Страницы
261-274
Аннотация
Проведено исследование влияния гидрокарбонатной обработки меди, никеля и низкоуглеродистых хромоникелевых нержавеющих сталей в кипящем 1 М растворе NaHСО на их коррозионную стойкость в расплаве NаОН в интервале температур 400-600С. Гидрокарбонатную обработку материалов проводили в течение 2-х часов после выдержки в предварительно обезвоженном деаэрированном аргоном расплаве NaОH через интервалы, кратные 96 ч. Общая продолжительность коррозионных испытаний составляла 288 ч. Исследована методами рентгенофазового анализа (РФА) и электронной микроскопии микроструктура и фазовый состав поверхностных слоев, образующихся на исследуемых материалах после коррозионных испытаний в расплаве NaOH, в процессе которых проводилась гидрокарбонатная обработка. Установлено, что гидрокарбонатная обработка не оказывает влияния на общую скорость коррозии исследуемых материалов в расплаве NaOH в исследуемом интервале температур. Показано, что гидрокарбонатная обработка никеля, содержащего после выдержки в расплаве NaOH в поверхностном слое преимущественно три оксидные фазы - NiO, Ni(OH) и γ-NiOOH, оказывает влияние на их соотношение. Оксигидроксид никеля NiOOH является неустойчивым в водных слабощелочных растворах, в процессе обработки наблюдается самопроизвольный переход NiOOH → Ni(OH) и на поверхности никеля формируется пассивная пленка, состоящая из двух оксидных фаз NiO и Ni(OH), обладающая высокими защитными свойствами. В процессе гидрокарбонатной обработки меди, содержащей после выдержки в расплаве NaOH в поверхностном слое двухслойную пленку оксидов Cu/СuО/СuО, образование оксидно-карбонатных слоев, характеризующихся более высокими защитными свойствами, не происходит. Нержавеющие стали с повышенным содержанием никеля 17.5 % и 18.5 % и молибдена (6.0 - 6.5) % находятся, как и никель, в расплаве NаOH при температурах, не превышающих 500С, в устойчивом пассивном состоянии и гидрокарбонатная обработка не вызывает появления локальных разрушений. Добавка в данную сталь таких легирующих элементов, как медь, марганец и кремний, которые при определенных условиях могут вызывать локальную депассивацию стали, не оказывает влияние на свойства защитной пассивной пленки стали, формирующейся в расплаве NаOH, состоящей из оксидов (гидроксидов) преимущественно коррозионностойких компонентов хрома CrO, никеля NiO, Ni(OH) или их смешанных оксидов NiCrO (NiO∙CrO), а также оксидов железа FeO и γ-FeO. По мере уменьшения содержания никеля до 13.0 % и молибдена до 2.0 % в стали или повышении температуры расплава NаOH до 600С для сталей с повышенным содержанием никеля на поверхности формируются более дефектные пористые оксидные слои, содержащие большую долю менее стойких оксидов железа (II, III) и никеля (II): FeO, NiO, FeO, а также небольшое количество смешанных оксидов NiCrO (NiO∙CrO), приводящих к возрастанию скорости коррозии.
Ключевые слова
расплав гидроксида натрия коррозионная стойкость медь никель нержавеющая сталь гидрокарбонатная обработка
Дата публикации
16.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Безносов А.В., Драгунов Ю.Г., Рачков В.И. Тяжелые жидкометаллические теплоносители в атомной энергетике. М.: Изд АТ. 2007. 434 с.
  2. 2. Натрий. Свойства, производство, применение. / Морачевский А.Г., Шестеркин И.А., Буссе-Мачукас В.Б. и др. / Под ред. Морачевского А.Г. СПб.: Химия. 1992.
  3. 3. Морачевский А.Г., Вайсгант З.И., Демидов А.И. Переработка вторичного свинцового сырья. СПб.: Химия. 1993.
  4. 4. Морачевский А.Г. Переработка вторичного свинцового сырья: Соврем. состояние исслед. и аннотир. указ. лит. за 1997-2001 гг. СПб.: Изд-во СПбГПУ. 2003.
  5. 5. Делимарский Ю.К. Ионные расплавы в современной технике. М.: Металлургия. 1981.
  6. 6. Делимарский Ю.К., Барчук Л.П. Прикладная химия ионных расплавов. К.: Наукова думка. 1988.
  7. 7. Делимарский Ю.К., Фишман И.Р., Зарубицкий О.Г. Электрохимическая очистка отливок в ионных расплавах. М.: Машиностроение. 1976.
  8. 8. Юркинский В.П., Фирсова Е.Г., Батурова Л.П. Коррозионная стойкость ряда конструкционных материалов в расплаве NaOH // Журнал прикладной химии. 2010. 83. № 10. С. 1677-1682.
  9. 9. Юркинский В.П., Фирсова Е.Г., Батурова Л.П. Особенности коррозионного поведения тантала, титана и ряда неметаллических материалов в расплаве NaOH // Журнал прикладной химии. 2011. 84. № 5. С. 781-784.
  10. 10. Юркинский В.П., Фирсова Е.Г., Батурова Л.П., Кузьмина М.Ю. Коррозионная стойкость медно-никелевых сплавов в расплаве NaOH // Химическая промышленность. 2012. 89. № 8. С. 416-419.
  11. 11. Юркинский В.П., Фирсова Е.Г., Батурова Л.П. Коррозионная стойкость сварных соединений ряда конструкционных сплавов в расплаве NaOH // Расплавы. 2014. № 4. С. 53-59.
  12. 12. Юркинский В.П., Батурова Л.П., Фирсова Е.Г. Коррозионная стойкость сталей в расплаве NaOH // Черные металлы. 2014. № 4 (988). С. 73-77.
  13. 13. ГОСТ 9.907-2007. Металлы, сплавы, покрытия металлические. Методы удаления продуктов коррозии после коррозионных испытаний. М.: Стандартинформ. 2007.
  14. 14. Батлер Дж.Н. Ионные равновесия. Л.: Химия. 1973.
  15. 15. Моисеева Л.С., Куксина О.В. О зависимости коррозии стали в бескислородной водной среде от рН и давления СО2 // Защита металлов. 2003. 39. № 5. С. 542-551.
  16. 16. Рабинович В.А., Хавин З.Я. Краткий химический справочник. СПб.: Химия. 1991.
  17. 17. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. М.: Химия. 1987.
  18. 18. Макаренко В.Д. Основы коррозионного разрушения трубопроводов: Учебное пособие / Макаренко В.Д., Шатило С.П., Земенков Ю.Д., Бахарев М.С. и др. / Под ред. В.Д. Макаренко. Тюмень: ТюмГНГУ. 2009.
  19. 19. Борщевский А.М., Сухотин А.М. Исследование пассивного состояния никеля в кислых и щелочных средах микрокулонометрическим методом // Журнал прикладной химии. 1992. 65. № 9. С. 1942-1946.
  20. 20. Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions, Pergamon Press, Oxford. 1966.
  21. 21. Glemser O., Einerhand J. Die Struktur hxherer Nickelhydroxide // Z. Anorg. Chem. 1950. Bd. 261. P. 43-51.
  22. 22. Glemser O., Einerhand J. The chemical processes at the nickel hydroxide anode of the Edison storage battery // Z. Elektrochem. Angew. Physik. Chem. 1950. 54. P. 302-304.
  23. 23. Казаринов И.А., Волынский В.В., Клюев В.В., Новоселов М.А. От щелочных аккумуляторов к суперконденсаторам. Оксидноникелевый электрод: теория процессов и современные технологии его изготовления // Электрохимическая энергетика. 2017. 17. №4. С. 173-224.
  24. 24. Миомандр Ф., Садки С., Одебер П., Меалле-Рено Р. Электрохимия. М: Техносфера. 2008.
  25. 25. Strekalovskaya D., Baturova L., Kondrateva A., Semencha A., Andreeva V. Electrochromic Thin-film Nickel-oxide Coatings for Systems with Adjustable Light Transmission // Phys. Status Solidi A: Applications and Materials Science. 2024. 221. № 11.
  26. 26. Дамаскин Б.Б., Петрий О.А, Цирлина Г.А. Электрохимия. М.: Химия, КолосС. 2008.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека