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Работа посвящена анализу механизма несмешиваемости и особенностей его про-
явления в случае смесей классических электролитов. Данный механизм следует 
выводить из  различий в  потенциальной энергии ионов, составляющих компо-
ненты смеси, по отношению к их окружению. Так как электростатические вза-
имодействия экранируются на большом удалении от центрального иона в любых 
электролитах, то для рассматриваемого механизма имеет значение, какой вклад 
в концентрационную зависимость химического потенциала компонента дает тот 
или иной сорт ионов. В работе рассматривается упрощенная модель бинарного 
раствора, в  которой взаимодействие катионов и  анионов в  каждом из  ионных 
компонентов аппроксимируется моделью заряженных твердых сфер, то есть они 
рассматриваются как примитивные электролиты (restricted primitive model  – 
RPM). Поскольку задачу о  жидкофазной несмешиваемости невозможно рас-
смотреть без учета конечных размеров ионов, необходимо, во-первых, выбрать 
как минимум полную версию дебай-хюккелевской модели, и, во-вторых, учесть 
прямой вклад сил исключенного объема или твердосферного отталкивания, для 
которого может быть использована модель ван-дер-ваальсового типа. В резуль-
тате рассуждение о  концентрационной зависимости плотности в  жидкофазной 
системе и уравнение состояния, которое позволяет ее найти, становятся ключе-
выми для описания особенностей купола несмешиваемости. Теоретический ана-
лиз задачи о несмешиваемости можно осуществить, считая, что катион и анион, 
принадлежащий одному из компонентов бинарной смеси, обладают одним и тем 
же значением ионного радиуса и равным, но противоположным зарядом, отли-
чаясь при этом от их величины для другого компонента раствора. Таким обра-
зом, формулируются бинарная примитивная модель, позволяющая рассмотреть 
эффекты зарядовых отличий на  купол несмешиваемости. В  настоящей рабо-
те подробно выводятся аналитические выражения, описывающие положение 
критической точки смешивания в  асимптотическом пределе малых зарядовых 
отличий. Показано, что критическая температура пропорциональна четвертой 
степени, а смещение критического состава от эквимолярного происходит в сто-
рону компонента с меньшими значениями зарядов. Последний результат, по всей 
видимости, является достаточно общим, описывая предпочтение в растворимо-
сти солей, которые имеют бóльшие значения зарядов, в ионных расплавах с мень-
шими зарядами на катионах и анионах.

Ключевые слова: купол несмешиваемости, критическая точка, модель заряжен-
ных твердых сфер, теория Дебая-Хюккеля, исключенный объем
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ВВЕДЕНИЕ

Особенности формирования двухфазных областей жидкость-жидкость в ион-
ных системах изучены явно недостаточно. Если взять, например, жидкофазную 
несмешиваемость солевых расплавов, то  она является редким явлением, если 
рассматривать смеси с  общим анионом или катионом. Однако уже во  взаимных 
тройных системах разнообразные смеси галогенидов щелочных металлов демон-
стрируют купол несмешиваемости на фазовой диаграмме (ФД) весьма часто [1–4]. 
В последние два десятилетия таким примерам было уделено много внимания при 
экспериментальном изучении вопросов измерения и описания плотности, поверх-
ностного натяжения, скорости звука [5–13].

С другой стороны, достигнут значительный прогресс в понимании вопросов фазо-
вых переходов и критических явлений для упрощенных моделей, в первую очередь так 
называемой ограниченной примитивной модели — restricted primitive model (RPM) 
и  ее разнообразных модификаций, включая образование нейтральных бьеррумов-
ских пар [14–16]. Поясним, что синонимом «примитивной» модели является модель 
заряженных твердых сфер с равными диаметрами катиона и аниона, несущими рав-
ные, но  противоположные заряды. Здесь следует заметить, что английский термин 
«primitive» правильнее переводить не как «примитивный», а скорее как первоначаль-
ный (primitivus – лат.), простой, несложный по устройству. Уместно также сослаться 
на мнение Блюма, который справедливо называет примитивными электролитами все, 
которые описываются моделью заряженных твердых сфер с произвольными значени-
ями диаметров и зарядов [17]. Для теории ионных систем и электролитов эта модель 
является стартовой в  описании разнообразных свойств и  явлений. По  сути, еще в 
1923 году Дебай и Хюккель [18, 19] продемонстрировали средне-полевой путь учета 
конечных размеров ионов в избыточную часть свободной энергии. Совершенно ясно, 
что для теории электролитов и  ионных жидкостей в  целом эти классические идеи 
являются отправной точкой при обсуждении более сложных эффектов, проявлений 
поляризуемости ионов, диэлектрических свойств и т.д. Именно поэтому при анализе 
вопросов несмешиваемости полезно проанализировать следствия обобщенной при-
митивной модели для бинарного раствора в качестве основы.

Рассмотрим коротко основные результаты, полученные в  основном в  работах 
Фишера и  соавторов применительно к  фазовым переходам жидкость-пар  [14] для 
RPM. Во-первых, достаточно неожиданным результатом явилось описание критиче-
ской точки жидкость-пар с позиций модели Дебая—Хюккеля для RPM только через 
70 (!) лет после ее появления. Во-вторых, оказалось, что ее предсказания для крити-
ческой температуры не сильно отличаются от наилучших на тот момент результатов 
по  компьютерному моделированию методами Монте-Карло и  молекулярной дина-
мики. Дополнительный учет образования бъеррумовских нейтральных пар позволил 
устранить нефизичные предсказания (бананообразная форма двухфазной области 
жидкость-пар) модели Дебая—Хюккеля в  чистом виде. Дальнейшие теоретические 
исследования критических явления группы Фишера касались обобщений на  слу-
чай несимметричных по размерам и зарядам моделей классических ионных флюи-
дов [20–22]. Можно отметить, что были значительно усовершенствованы методики 
МД для описания критических явлений методом МД именно в окрестности крити-
ческой точки [23]. Однако возможная жидкофазная несмешиваемость примитивных 
электролитов ими не рассматривалась. В работах немецкой группы Шроера [24–25] 
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задача о расслоении в сложных органических ионных системах анализировалась, в том 
числе, с  фокусом на  замкнутые области сосуществования фаз, когда в  растворе есть 
и верхняя, и нижняя критические точки. Авторы также предложили описание и интер-
претацию прецизионных экспериментальных данных с позиций теории соответствен-
ных состояний и скэйлинговых соотношений. Расслаивающиеся смеси ионных жидко-
стей в неполярных растворителях также находились в фокусе исследований [26].

Тем не менее можно указать несколько работ для смесей заряженных твердых 
сфер с  тремя видами ионов, например, имеющих разные катионы и  одинаковые 
анионы одинакового размера, в  расчетном исследовании с  помощью средне-сфе-
рического приближения (ССП)  [27–29], которые демонстрируют фазовое поведе-
ние типа III, согласно классификационной схеме ван Кониненбурга и Скотта [30]. 
Однако расчеты характеристик несмешивающихся были проведены для смесей 
заряженных твердых сфер, имеющих общий ион, что вызывает вопросы применитель-
но к неорганическим солям галогенидов щелочных металлов.

Высоко оценивая данные расчетные работы в целом, надо тем не менее указать 
на главный недостаток, с нашей точки зрения, а именно: отсутствие анализа физи-
ческих причин несмешиваемости. В этих публикациях содержится лишь расчетное 
описание примеров расслаивающихся модельных систем, то есть констатация фак-
тов о реализации расслаивания в случае конкретных значений ионных параметров 
без анализа термодинамики смешения и  оценок зависимости критической точки 
от размерных различий ионов. Было показано, что ССП может быть использовано 
для базовых расчетов жидкофазных равновесий, однако, чему обязано само суще-
ствование таких равновесий и  каковы предсказания теории при сопоставлении 
с  реальными системами, осталось за  пределами внимания этих авторов. В  наших 
работах  [31–33] по  расчету ФД  в смесях заряженных твердых сфер была сформу-
лирована более подходящая для задачи о несмешиваемости ГЩМ солей модель — 
бинарная примитивная модель, которая лучше подходит для теоретического анализа 
и для описания механизма рассматриваемого явления. Каждый из компонентов сме-
си является примитивным электролитом со своим значением ионных радиусов или 
зарядов. Использование ССП приближения позволило в  области малых различий 
получить аналитические результаты и  провести расчеты купола несмешиваемости 
для конкретных значений ионных радиусов. Отметим, что более подробно эволю-
ция ФД с ростом зарядовых или размерных отличий ионов, принадлежащих разным 
компонентам смеси, не рассматривалась.

Целью настоящей работы является теоретическое описание жидкофазной несме-
шиваемости смеси ионных жидкостей, описываемых как примитивные электроли-
ты, ионы компонентов которых различаются по величине заряда с помощью теории 
Дебая—Хюккеля (полной версии) с дополнением за счет сил исключенного объема 
в духе теории Ван-дер-Ваальса. Основное внимание уделено выводу наглядных формул 
и  выражений на  положение критической точки смешивания или вершины купо-
ла несмешиваемости. Отсутствие самого простого дебай-хюккелевского описания 
ионной системы применительно к задаче о расслоении двух электролитов является 
существенным пробелом, который необходимо заполнить. Основными вопросами, 
которые адресуются к самой простой формулировке модели раствора с расслоением 
ниже некоторой температуры, являются следующие:

1. Как зависит критическая температура от разности зарядов?
2. К какому из компонентов раствора смещается критическая точка?
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ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

В упомянутых работах Синистри и  соавторов отмечалось, что описание экс-
периментальных результатов с  позиций квазихимической модели Гугенгейма  [2] 
встречает принципиальные трудности, если дальнодействующее кулоновское вза-
имодействие не  берется во  внимание. Однако как ввести в  теорию кулоновское 
слагаемое химического потенциала и  с его помощью вычислить характеристики 
несмешиваемости, в  этих работах не  было осуществлено. Тем не  менее отдадим 
должное Синистри и  соавторам, которые правильно проанализировали возмож-
ные вклады в химический потенциал и нашли с помощью экспериментальных дан-
ных об измеренных ими фазовых диаграммах, что взаимодействия первых и вторых 
соседей при квазихимическом подходе недостаточно, и необходимо рассматривать 
и дальнодействующую составляющую, которую они оценить не смогли.

В наших работах  [31–32] проблема несмешивающихся ионных расплавов 
переформулирована посредством статистико-механических моделей, в которых 
основное внимание уделяется обсуждению особенностей экранирования элек-
тростатических взаимодействий между ионами. Несколько позже этой нашей 
работы  [31], асимметричная по  размерам модель была использована Стеллом 
и соавторами [34]. Она предлагалась в качестве более удобной основы для чис-
ленных расчетов жидкофазной несмешиваемости, когда важно учесть ассоциа-
цию в нейтральные ионные пары Бьеррума по схеме Эбелинга и Григо [35].

В предлагаемой работе рассматривается модель, в которой жидкофазная несме-
шиваемость может возникать за счет зарядовых отличий, важным удобством кото-
рой является равенство всех радиусов ионов в смеси, будь то катионы или анионы.

Бинарная примитивная модель с различиями в зарядах

Рассмотрим смесь ионных жидкостей AcB1–c, где A M X≡ + + − +
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Запишем свободную энергию смеси в виде суммы идеального, твердосферного 
и кулоновского вкладов:

	 F F F Fid hc q= + + ,	 (1)

Идеальную часть представим как обычно [35]:
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где k – постоянная Больцмана, T – абсолютная температура, λ
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вая длина волны, mi – массы частиц, h – постоянная Планка [36]. Упростим сразу 
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данное выражение, оставив только наиболее важную для задачи о несмешиваемо-
сти –  зависимость от концентрации; имеем:

	
f

F

NkT
c c c c C onst V Tid

id≡ = + − − +ln ( )ln( ) ( , )1 1 .	 (2.2)

Вклад в свободную энергию Гельмгольца за счет исключенного объема запишем 
в приближении ван-дер-ваальсовского типа (см., например, [14]):

	
f

F
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(3)

где ∆= −1 V
V

hc описывает долю свободного объема, а V a Nhc =
4

3
3π , соответственно, 

исключенный объем, рассчитанный как суммарный объем N  сферических ионов 
радиуса а.

Дебай-хюккелевской формуле для кулоновского слагаемого свободной энергии 
Гельмгольца можно придать следующий вид:
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Здесь ρ = N/V  – численная плотность, ρ*=ρa3  – безразмерная плотность, 
T* + ɛakT/(Ze)2 – безразмерная температура. Таким способом температура выражает-
ся через характерную величину кулоновской энергии – (Ze)2/ɛa, – на минимальном 
расстоянии до центра иона, где находится точечный заряд. κD – обратная длина Дебая, 
ɛ – относительная диэлектрическая проницаемость.

Наиболее прямой способ анализа основных характеристик несмешиваемости — 
исследование поведения различных слагаемых обменного химического потенциала 
в зависимости от концентрации [36]:

	
µ µ µ µ µ µ=

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dF

dc V T A B q hc id,
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Удобство этой термодинамической величины, очевидно, связано с  тем, что 
обменный потенциал является, с одной стороны, производной свободной энергии, 
которая сопряжена с концентрацией, а с другой — является разностью химических 
потенциалов компонентов смеси. Рассматриваемый потенциал аналогичен давле-
нию для задачи о ФП типа жидкость-пар, однако описывает изменения свободной 
энергии не вдоль плотности или объема, а вдоль концентрации бинарного раствора. 
В результате для заданных температуры и давления, а именно такие внешние усло-
виями будут дальше и рассматриваться, обменный потенциал описывает различие 
в  поведении веществ-компонентов смеси. Производная обменного потенциала 
по концентрации, в свою очередь, определяет границы области абсолютной термо-
динамической неустойчивости истинного раствора — спинодали.

Для смешанного дебай-хюккелевского электролита с  зарядовыми отличиями 
кулоновское слагаемое обменного потенциала нетрудно выразить в следующем виде:
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Так как твердосферный вклад в химические потенциалы ионов зависит от кон-
центрации и радиусов ионов абсолютно одинаково, то очевидно, что μhc ≡ 0.

Здесь в  полной мере просматривается как удобство обменного потенциала для 
теоретического анализа, так и  сформулированного варианта модели смешанного 
электролита. А именно, в случае смеси с зарядовыми отличиями эффекты исключен-
ного объема не дают прямого вклада в такие характеристики несмешиваемости как 
граница спинодального распада и, соответственно, положение критической точки 
смешивания. В то же время эти эффекты являются существенными при определении 
кривой сосуществования — бинодали. Однако при отсутствии такого учета в свобод-
ную энергию предсказания модели в области низких температур будут нефизичными.

Спинодаль

Далее воспользуемся концепцией спинодали для нахождения границы абсолют-
ной термодинамической нестабильности и  найдем ее  вершину, соответствующую 
критической точке смешивания. Хорошо известно  [36], что границы абсолютной 
неустойчивости бинарного раствора определяются обращением в нуль производной 
химического потенциала.
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Отметим, что при определении обменного химического потенциала можно было 
стартовать со свободной энергии Гельмгольца, производная которой по концентра-
ции вычислялась при фиксированном объеме и  температуре (одно из  стандартных 
определений химического потенциала в термодинамике) [37]. Тем самым химические 
потенциалы были определены как функции температуры, концентрации и  плотно-
сти. Теперь мы  интересуемся состояниями системы при фиксированных давлении 
и температуре. Поэтому необходимо учитывать, что плотность сама является функци-
ей заданных внешних параметров (P, T), которая должна быть найдена посредством 
уравнения состояния.

В рассматриваемом случае условие (7) приводит к следующему уравнению для 
вычисления границы области спинодального распада:
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Даже при таком упрощенном описании, к сожалению, нельзя найти аналити-
чески формулы для критической температуры и концентрации как функции отно-
шения зарядов ионов в различных компонентах (δ). Чтобы продвинуться дальше 
в аналитическом описании, рассмотрим случай малых различий (δ << 1).

Рассмотрение разности зарядов ионов как непрерывного параметра необходимо 
трактовать лишь в качестве одного из теоретических приемов для более наглядного 
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выявления кулоновского механизма в поведении характеристик несмешиваемости. 
Например, в теории критических явлений рассмотрение размерности пространства 
как непрерывного параметра позволило установить ряд общих закономерностей для 
огромного класса систем, испытывающих фазовые переходы [39]. Естественно, что 
для дискретных значений валентностей надо просто подставлять конкретные значе-
ния параметра, задающего различия (например: Z=1, d =1).

Уравнение состояния и концентрационная зависимость плотности

Итак, в пределе δ << 1 спинодаль вместе с ее вершиной, отвечающая критиче-
ской температуре смешивания  – Tc, должна лежать в  области низких температур 
T*  << 1 , а  критическая концентрация (Xc) должна быть близка к  эквимолярному 
составу << ½. Для оценки вклада концентрационной зависимости плотности (второе 
слагаемое в правой части выражения 8) используем формулу для вклада в давление 
в приближение ван-дер-ваальсовского (VdW) типа [36, 14]:
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где xi + Ni /N (Si xi =1), для ионов электролита А: x1 = x2 = ½ c ; для ионов электролита B: 
x3 + x4 + ½ (1-c); di + 2ai – диаметры ионов. Наиболее существенное требование к этому 
слагаемому давления состоит в том, что оно должно доминировать при низких темпе-
ратурах, обеспечивая правильный асимптотический предел сжатия системы nmaxr* → 1. 
Так как в теории Дебая—Хюккеля рассуждения строятся вокруг центрального иона, раз-
мерной характеристикой которого является радиус, а не диаметр (!), то выбираем, напри-
мер, значение nmax = 8, отвечающее шаровой упаковке в простой кубической решетке 
(SC). Отметим, что этот геометрический коэффициент не  является сколько-нибудь 
принципиальным при качественном анализе характеристик несмешиваемости.

Вычисляя кулоновский вклад в давление, получим:
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где была использована низкотемпературная асимптотика обратной длины Дебая 
(x ~ 1/T ½ >>1). Окончательно уравнение состояния модели DH –VdW в этом преде-
ле принимает вид:
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где P0 – внешнее давление.
При низких температурах баланс внешнего давления и, соответственно, вклад 

в температурную зависимость плотности обусловлен силами исключенного объема. 
Видно, что при P0=Const расходимость левой части пропорциональная T–1 компен-
сируется аналогичной расходимостью фактора (1–8ρ*)–1. Это существенное отли-
чие от  случая более высоких температур. Здесь смесь электролитов близка к  пре-
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делу упаковки шаров. В то же время обратная дебаевская длина пропорциональна 
T –½ и  поэтому кулоновский вклад оказывает намного меньший эффект на  плот-
ность в этой области температур. При обычных лабораторных значениях давления 
(P0 ≈ 1–10 атм.), то есть малых по сравнению со средней плотностью кулоновской 
энергии, порядок которой обычно лежит в  интервале (1–10 eV/Å3 ≈ 105–106 атм.), 
и температуры (≈102 –103 K) обычно можно пренебречь, наоборот, именно внешним 
давлением в данном уравнении.

Рассмотрим решение (11) относительно плотности. Опустим слишком громоздкое 
решение этого кубического уравнения в  радикалах, а  поступим следующим образом. 
Видно, что фактор 1–8ρ* имеет величину пропорциональную температуре, то есть мал.

С точностью до квадратичных слагаемых по температуре легко найти решение (11) 
именно для этой малой разности, разлагая в ряд Тэйлора выражение для давления. 
Тогда для плотности получим:
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(12)

Виден линейный закон убывания плотности с ростом температуры и ее линей-
ное возрастание с  увеличением концентрации, однако производная плотности 
по концентрации будет пропорциональна T 3/2. При этом обсуждение возрастания 
плотности с ростом концентрации, очевидно, имеет смысл только при T≠0.

Это представляется вполне понятным с  физической точки зрения. Действи-
тельно, при низких температурах, в  асимптотическом пределе максимального 
заполнения объема ионами, которые имеют одинаковые размеры, кулоновские 
силы все менее способны уплотнить смесь при любой концентрации. Доля свобод-
ного объема становится пропорциональной отношению температуры к внешнему 
давлению в соответствии с доминированием сил исключенного объема.

Таким образом, в асимптотическом случае модели с малыми зарядовой разно-
стью (Δ << 1) область абсолютной термодинамической неустойчивости определяет-
ся явной концентрационной зависимостью обратной дебаевской длины.

С учетом этого уравнение для определения границы спинодального распада при-
обретает более простой вид:
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Так как x>>1, имеем для спинодали еще более простое уравнение:
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Критическая точка

Асимптотическая формула для критической температуры теперь легко находится 
с помощью (14) при cs >> ½ и r* >> 1/8:

	
Tc

* ≈
δ
π

4

8
.	 (15)

Положение максимума спинодали (14) по оси состава или критическая концен-
трация определяется следующей асимптотикой:
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Отметим нетривиальный характер предсказаний простой и общеизвестной моде-
ли. Здесь на последнем этапе вычислений пришлось применить правило Лопиталя, 
так как числитель и знаменатель (16) обращаются в нуль при Δ=0. Видно, что тен-
денция к несмешиваемости при малых отличиях весьма мала и возрастает по закону 
четвертой степени. Что же  касается положения критической точки по  оси состава, 
то ее смещение происходит в сторону компонента с меньшими значениями валентно-
сти ионов. Это проще всего интерпретировать в терминах сравнения растворимостей 
компонентов друг в друге. Более крутая ветвь купола несмешиваемости, прилегающая 
к компоненту с меньшими значениями зарядов катиона и аниона (A), отражает факт 
меньшей растворимости соли с большими зарядами (B). И наоборот, более пологая 
ветвь со стороны компонента B демонстрирует лучшую растворимость жидкой соли А.

На рис. 1f представлены также равновесные флуктуации концентрации непо-
средственно связанные с малоугловым пределом структурного фактора типа кон-

центрация-концентрация ∆c S ccc
P T

2 0 0 1( ) ( ) /
,

= = ∂
∂( )βµ  при температуре ниже 

критической. Хорошо видна характерная расходимость этих флуктуаций вблизи 
кривой спинодального распада. Формирование такой особенности можно про-
следить из отрицательного наклона кулоновского слагаемого обменного потен-
циала  (рис.  1e). Именно отрицательные значения производной этой величины 
приводят к значениям производной обменного химического потенциала внутри 
спинодальной области или, эквивалентно, второй производной свободной энер-
гии. Это и обуславливает абсолютную термодинамическую неустойчивость. Экви-
валентно, вогнутый участок интегральной свободной энергии при смешении 
в  зависимости от  концентрации можно видеть и  на рис. 1d, где также нанесена 
общая касательная к ее кривой в сосуществующих точках на бинодали.

Бинодаль

На рис. 2. показаны рассчитанные кривые сосуществования – бинодали и спи-
нодали для случая δ=0.1. В  расчете использовалось построение Максвелла или 
правило равных площадей на графике обменного химического потенциала в сосу-
ществующих фазах.
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Рис. 1. (a–f). Концентрационные зависимости различных характеристик DH смеси электролитов с заря-
довыми отличиями при d = 0.1 и T* = 0.3 × 10–6: a) приведенная плотность; b) параметр экранирования; 
c) вклады в интегральную свободную энергию смешения; d) свободная энергия смешения; e) обменный 
потенциал и его составляющие; f) равновесные флуктуации концентрации.
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ЗАКЛЮЧЕНИЕ

Завершая анализ проблемы расслаивания бинарной примитивной модели элек-
тролита с помощью модели Дебая—Хюккеля, отметим несколько важных моментов.

Во-первых, проведено аналитическое рассмотрение, которое привело к нагляд-
ным формулам, описывающим термодинамику и критическую точку и отражающим 
кулоновскую природу ионных жидкостей.

Во-вторых, уже дебай-хюккелевская модель примитивных электролитов 
позволяет понять основную причину несмешиваемости, которая заключается 
в  различной экранирующей способности ионов разной валентности и  размера. 
А именно, обратный дебаевский радиус, а вместе с ним и понижение свободной 
энергии ионной системы будет тем больше, чем больше их валентности. За счет 
этого в бинарном электролите всегда проявляется тенденция к сегрегации кати-
онов и анионов «своего» компонента. В результате при достаточно низких тем-
пературах смешанному раствору электролитов выгодней расслоиться на две фазы 
разной концентрации, чем оставаться в менее упорядоченном состоянии истин-
ного раствора.

В-третьих, для описания несмешиваемости с помощью модели ионной системы 
понадобилась модификация дебай-хюккелевскоой модели посредством дополни-
тельного слагаемого в свободную энергию, описывающего явный вклад сил исклю-
ченного объема для обеспечения правильного низкотемпературного предела плот-
ности и ее концентрационной зависимости.

В-четвертых, найден закон четвертой степени для критической температуры 
смешивания в зависимости от разности зарядовых отличий ионов в различных ком-
понентах бинарного электролита. Так как критическая температура характеризует 
степень несовместимости двух ионных жидкостей, то ее зависимость от параметров, 
описывающих микроскопические различия частиц – компонентов смеси, – является 
важной величиной, заслуживающей всестороннего изучения.

В-пятых, важной особенностью проявления кулоновского взаимодействия 
в  таких смесях ионных жидкостей является смещение купола несмешиваемости 
в  сторону компонента с  меньшими значениями зарядов ионов. Подобное сме-
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Рис. 2. Бинодаль и спинодаль модифицированной модели Дебая—Хюккеля для δ = 0.1.
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щение купола следует прямо связывать с  проявлением кулоновского механизма, 
управляющего фазовыми переходами. Отметим, что смещение по  концентрации 
может анализироваться только для задачи о  расслаивании, так как для фазовых 
переходов жидкость-пар подобные эффекты просто отсутствуют.

Таким образом, были выявлены ранее не  описанные особенности эффектами 
исключенного объема модифицированной дебай-хюккелевской модели.

В дальнейшем мы отдельно проведем рассмотрение случаев немалых зарядо-
вых и размерных различий. В области Δ порядка единицы купол несмешиваемо-
сти должен становиться настолько высоким, что обязан перекрываться с  обла-
стью сосуществования жидкость-пар. Интересно проследить эволюцию фазовой 
диаграммы дебай-хюккелевских смешанных флюидов. К  этому следует добавить 
и  вопросы, связанные с  трехфазными равновесиями, в  которых вершина купо-
ла несмешиваемости может одновременно быть точкой испарения. Существо-
вание бикритической точки, где касаются линии фазовых переходов 2-го рода 
жидкость-пар и  жидкость-жидкость, представляется дополнительным уместным 
и существенным вопросом.
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IMMISCIBILITY OF IONIC MELTS:  
A SIMPLE MODEL WITH CHARGE DIFFERENCES
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This work is devoted to the analysis of the immiscibility mechanism and the peculiari-
ties of its manifestation in the case of mixtures of classical electrolytes. This mechanism 
should be deduced from the differences in the potential energy of the ions constituting 
the components of the mixture with respect to their surroundings. Since electrostatic 
interactions are shielded at  a large distance from the central ion in  any electrolytes, 
it is important for the considered mechanism what contribution to the concentration 
dependence of the chemical potential of a component is given by one or another sort 
of ions. In this paper we consider a simplified model of a binary solution in which the 
interaction of cations and anions in each of  the ionic liquids is approximated by  the 
model of charged hard spheres, i.e., they are considered as primitive electrolytes. Since 
the problem of  liquid-phase immiscibility cannot be  considered without taking into 
account the finite sizes of ions, it is necessary, firstly, to choose at least the full version 
of the Debye-Hückel model, and, secondly, to take into account the direct contribu-
tion of excluded volume effects or hard-sphere repulsion, for which a van der Waals-
type model can be used. As a result, the reasoning about the concentration dependence 
of the density in a liquid-phase system and the equation of state that allows us to find 
it become key for describing the features of the miscibility gap. The theoretical anal-
ysis of the immiscibility problem can be carried out by considering that a cation and 
an  anion belonging to  one of  the components of  a binary mixture possess the same 
value of ionic radius and equal but opposite charge, while differing in their values for 
the other component of the solution. Thus, a binary restricted primitive model (RPM) 
is formulated to consider the effects of charge differences on the miscibility gap. In the 
present work, analytical expressions describing the position of the critical point in the 
asymptotic limit of small charge differences are derived in detail. It is shown that the 
critical temperature is proportional to the fourth degree of the charge mismatch, and 
the shift of the critical composition from equimolar occurs towards the component with 
smaller charge values. The latter result seems to be quite general, describing the prefer-
ence in solubility of salts, which have larger charge values, in ionic melts with smaller 
charges on cations and anions.

Keywords: miscibility gap, critical point, charged hard sphere model, Debye-Hückel 
theory, excluded volume
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