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Медь и ее сплавы широко применяются в деталях металлургического обору-
дования. Из-за высокой теплоемкости и отражающей способности излучения 
ИК-диапазона, детали из меди нашли применение в водоохлаждаемых элемен-
тах доменных печей, например, в фурмах, повергающихся активному газо-
абразивному, эрозионному и другим видам износа и газовой коррозии. Медь 
и ее сплавы имеют низкую стойкость против износа и коррозии. Для увели-
чения стойкости медных деталей предлагаются термобарьерные покрытия 
путем последовательного нанесения систем Ni–B–Si, Ni–Cr–Al-Y и ZrO2. 
Однако, первые слои покрытия имеют низкую адгезию, и как следствие, низкую 
прочность первого и последующих слоев. Лазерное переплавление решает 
проблему адгезии первого слоя к меди и остальных слоев к оплавленному слою. 
Используя методы CALPHAD в программном пакете TermoCalc (номер версии 
программного обеспечения 2024.1.132110-55) проведено моделирование влияния 
оплавления на свойства защитного покрытия системы Ni–B–Si. В качестве базо-
вого был выбран состав: Ni – 86.97 ат.%, B – 6.93 ат.%, Si – 6.1 ат.%. При воздей-
ствии лазерного излучения на покрытие, нанесенное газотермическим методом, 
наблюдается активное взаимодействие компонентов покрытия с медью с образо-
ванием сплошного слоя, содержащего в себе новые фазы и химические элементы. 
Появление некоторых из этих фаз изредка приводит к растрескиванию вследствие 
образования медно-никелевого сплава (монель-металла), обладающего относи-
тельно невысокой пластичностью. С использованием данных рентгенофазового 
анализа подтверждено, что в процессе оплавления происходит активное пере-
мешивание компонентов покрытия (Ni–B–Si) с компонентами подложки (Cu) 
с  образованием устойчивого соединения Cu с Ni. В связи с этим, при помо-
щи математического моделирования, спрогнозированы изменения плотности 
и методом Шейла определены скорости кристаллизации, а также фазы, образу-
ющиеся при охлаждении в покрытии, а именно: Ni86.97B6.93Si6.1, Ni84.47Cu2.5B6.93Si6.1, 
Ni81.97Cu5B6.93Si6.1, Ni76.97Cu10B6.93Si6.1, Ni71.97Cu15B6.93Si6.1, Ni66.97Cu20B6.93Si6.1. С помо-
щью расчетных методов, исходя из положений термодинамики, описан процесс 
лазерного оплавления при нагреве от 1750 К до 3000 К и последующем охлаж-
дении от  1750 К до 500 К. При исследовании процесса оплавления, для  всех 



	 ПОДБОР ОПТИМАЛЬНОГО СОСТАВА ПЛАЗМЕННОГО ПОКРЫТИЯ  	 101

составов определено, что благоприятным для формирования покрытия хорошего 
качества является содержание меди в покрытии порядка 15–20 ат.%, так как 
при этих концентрациях происходит наиболее полное высвобождение атомов 
меди с границ зерен, их переход в приповерхностные слои покрытия и связыва-
ние их с никелем в устойчивые соединения типа монель-металл.
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ВВЕДЕНИЕ

В современных промышленных производствах имеется потребность минимиза-
ции технологических затрат [1], которые удовлетворяются устранением износа, при-
водящего к ухудшению деталей [2]. В частности, износ является одним из факторов, 
который в значительной степени влияет на повышение времени непрерывной рабо-
ты доменной фурмы, вследствие недостаточной износо- и жаростойкости воздушных 
доменных фурм [3–5].

Одной из возможностей для получения изделий, например, фурм с улучшен-
ными свойствами, является создание защитных покрытий. Покрытия могут фор-
мироваться методами плазменного напыления, лазерной наплавки, аддитивного 
производства [6, 7], алитирования [8] и другими.

Уже довольно длительное время в промышленном производстве применяются 
термобарьерные покрытия, наносимые плазменным напылением. Они защищают 
основной материал изделия от механических воздействий, агрессивных сред и высо-
ких температур [9, 10]. Благодаря приемлемой стоимости и высокой эффективности 
практическое применение данной технологии постоянно расширяется [11,12].

Лазерную наплавку (оплавление) можно рассматривать как типичный нерав-
новесный метод обработки покрытий. Высокая концентрация излучения в пятне 
обработки приводит к большим скоростям и кинжальному эффекту проплавле-
ния. Высокая скорость охлаждения вызывает значительное изменение фазовых [13] 
и химических [14] составляющих, в том числе, появление интерметаллических сое-
динений [15,16]. При этом, изменяя мощность и скорость взаимодействия лазерного 
излучения, можно изменять фазовые состояния материалов. Поэтому очень важно 
иметь надежную информацию о фазовом составе и физико-химическим процессах, 
протекающих при кристаллизации сплавов.

Кроме того, лазерные технологии активно применяются в аддитивном произ-
водстве, при этом материалом для аддитивной технологии могут выступать поро-
шок или проволока, которые избирательно плавятся с помощью сфокусированного 
источника тепла и консолидируются при последующем охлаждении, образуя отдель-
ные слои, хорошо сцепленные между собой [3, 9, 16].

Для создания покрытия между разными по коэффициенту линейного расши-
рения материалами, такими как медь и диоксид циркония, применяют согласую-
щие слои промежуточные материалы. В рамках данной работы согласующим слоем 
является покрытие, нанесенное газоплазменным методом из порошка на никеле-
вой основе с последующим лазерным оплавлением. Самофлюсующийся сплав на 
основе никеля (Ni-B-Si), обладает отличными антикоррозионными свойствами, 
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повышенной износостойкостью в широком диапазоне температур. Si и B способ-
ствуют измельчению зернистой структуры наравне с высокой скоростью охлажде-
ния, получаемой при воздействии лазерного излучения [15, 17, 18]. Также лазер-
ное излучение способствует конвективному перемешиванию материалов внутри 
сварочной ванны. Бор в сплаве Ni-B-Si снижает температуру плавления  [17, 19] 
и увеличивает твердость за счет образования твердых фаз, таких как как Ni3B [20]. 
Si также способствует улучшению текучести никеля [21].

При использовании только газотермического напыления разрушение поверхно-
сти изделия происходит по согласующему покрытию с медными включениями по 
границам зерен. Это является следствием низкой адгезии покрытия и отсутствием 
диффузии материала подслоя в медь. Для увеличения адгезии покрытия Ni-B-Si 
к меди применяют метод лазерного оплавления.

При неравновесном и недостаточно однородном распределении порошка 
по всей рабочей площади фурмы процесс оплавления может привести к поверх-
ностным дефектам, мешающим равномерной адгезии следующих слоёв покрытия 
с  последующим неравномерным износом и преждевременному выходу из  строя 
покрытия  [22,  23]. После процесса оплавления медь, находившаяся в основе, 
в приповерхностных слоях, образует с никелем устойчивые соединения в виде 
монель-металла  [24, 25]. Вследствие чего, в зависимости от выбранного режима 
оплавления, наблюдается появление меди (от 0 до 20 ат.%) в Ni-B-Si.

После чего, для увеличения коррозионной стойкости, газоплазменным методом 
из порошка напыляется сплав Ni-Cr-Al-Y, который обладает высокой жаростой-
костью при температурах до 1473 К и обеспечивает коррозионную стойкость 
при образовании в процессе окисления на поверхности покрытия тонкой оксид-
ной высококачественной защитной пленки α-Al2O3 [21, 23, 26]. Последним сло-
ем напыляют оксид циркония, стабилизированный оксидом иттрия (ЦрОИт-7), 
применяемый для придания теплозащитных свойств покрытию, защиты от обра-
зования раковин и износа жаростойкого покрытия в связи с налипанием шлака 
на рабочую поверхность фурмы [27, 22, 28]. В свою очередь, долговечность кера-
мического покрытия из оксида циркония во многом определяется качеством связи 
промежуточного согласующего слоя с медной основой.

В данной работе методом компьютерного моделирования CALPHAD спрогно-
зированы фазы, образующиеся в результате лазерного оплавления газотермически 
нанесенного покрытия Ni-B-Si из порошка на медную основу, исследованы зави-
симости скорости кристаллизации определённых на практике концентраций, а так-
же термодинамически описаны происходящие в системе изменения. Полученные 
результаты будут использованы для определения наиболее благоприятного состава 
системы Ni–Cu–B–Si и последующего подбора режима лазерной обработки. Иссле-
дование структурно-фазового состава позволит определить работоспособность всего 
многослойного покрытия.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все результаты получены при использовании расчётных методик CALPHAD 
в программном пакете TermoCalc 2024а (от 20.12.2023), с номером версии программ-
ного обеспечения 2024.1.132110-55.
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Выбор исследуемых составов основывался на технологическом процессе (газо-
термическое напыление сплава Ni-B-Si с последующим оплавлением) нанесения 
покрытия на фурмы и необходимости сравнения изменений, происходящих при раз-
личных режимах оплавления покрытия Ni-B-Si лазерным излучением. При отсут-
ствии оплавления поверхности покрытие наносится аддитивно и не претерпевает 
изменений в приповерхностных слоях, т.е. в нем отсутствуют атомы меди и потому 
фаза типа монель-металл не образуется. При оплавлении поверхности происходит 
некоторое увеличение концентрации меди, доходящей до 20 ат.% [30]. В связи с этим 
были выбраны граничные условия, а также учитывалась зависимость результатов 
от температуры плавления (Cu – 1082.85 и Ni – 1728.15 К. [31]).

В эксперименте исследовали следующие составы: Ni – 86.97 ат.%; Ni – 81.97 ат.%, 
Cu  – 5 ат.%; Ni  – 76.97 ат.%, Cu  – 10 ат.%; Ni  – 71.97 ат.%, Cu  – 15 ат.%; Ni  – 
66.97 ат.%, Cu – 20 ат.%. Во всех случаях содержание B – 6.93 ат.% и Si – 6.1 ат.%.

Для определения структуры методом Шейла были обозначены предварительные 
скорости кристаллизации в интервале температур от 1728 К до 298 К. Так как изме-
нения структуры в интервалах температур от 800 К до 298 К и от 1728 К до 1300 К 
отсутствуют, то область исследования была скорректирована в интервале от 1300 К 
до 800 К и представлена на рис. 1.

На рис.  1 видно некоторое различие количества и температур образования 
соединений, появляющихся при кристаллизации только нанесенных и нанесен-
ных с последующим оплавлением покрытий. При кристаллизации сплава систе-
мы Ni-B-Si (без оплавления) происходит выделение чистого никеля и боридов 
M2B и M3B, и атомы меди при этом не выходят на приповерхностный слой. Таким 
образом, в сплаве Ni86.97-B6.93-Si6.1 в отсутствии Cu (рис. 1, графики а, б) при темпе-
ратуре 1403 К происходит выделение центров кристаллизации из Ni с гранецен-
трированной кубической решеткой (ГЦК).

В связи с сосуществованием неупорядоченных структур или не смешиваемостью 
образуются три гранецентрированные решетки Ni, обозначенные как FCC_L12, 
FCC_L12#2 и FCC_L12#3 (α-фаза). Фаза FCC_L12#3 образуется у систем Ni-B-Si-
Cu с содержанием меди от 10 до 20 ат. % в интервале температур от 1223 до 793 К 
и увеличивает свою объёмную долю в расплаве с увеличением содержания меди. 
Заканчивается процесс кристаллизации при температуре 1413 К. После чего начи-
нают выделятся фазы боридов Ni2B (M2B_C16), имеющих тетрагональную кри-
сталлическую решетку, и Ni3B (M3B_D011) с ромбической сингонией и четырьмя 
формульными единицами. При температуре 773 К образуются бориды кремния Si3B 
с решеткой, соответствующей Ni3B.

При увеличении содержания меди помимо боридов Ni2B и Ni3B образуются 
фаза под названием M3B_D011 вида борида Cu3B, содержание которой во всех слу-
чаях составляет порядка 0.25 мольных долей, и, в зависимости от содержания меди 
в  расплаве, имеет температуру образования для: Ni84.47-Cu2.5-B6.93-Si6.1  – 1655  К, 
Ni81.97-Cu5-B6.93-Si6.1  – 1639 К, Ni76.97-Cu10-B6.93-Si6.1  – 1603 К, Ni71.97-Cu15-B6.93-Si6.1 
и Ni66.97-Cu20-B6.93-Si6.1 – 1553 К. Часть α-фазы Ni расходуется на образование бори-
да Ni2B. С увеличением количества меди при кристаллизации расплава увеличива-
ется и количество α-фазы Cu (FCC_L12#2).

Более детально образование структуры монель-металла может показать изме-
нение FCC_L12, FCC_L12#2 в зависимости от содержания меди, представленного 
на рис. 2. В процессе кристаллизации все кривые имеют некоторое увеличение объ-
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ёмной доли фазы FCC_L12 (рис. 2а), и максимальные значения приходятся на кон-
центрацию меди 15 ат.%. При дальнейшем увеличении содержания меди до 20 ат.% 
происходит снижение количества названной фазы в расплаве. Кривые для составов: 
Ni84.47-Cu2.5-B6.93-Si6.1, Ni81.97-Cu5-B6.93-Si6.1 и Ni76.97-Cu10-B6.93-Si6.1, имеют линейный вид 
с небольшим изменением объёма фазы при понижении температуры. Изменение 

Рис. 1. Методом Шейла получены фазовые составы при скорости оплавления 0.033 м/с [32] в интервале тем-
ператур 1300 – 800 К : а – фазовый состав системы Ni86.97-B6.93-Si6.1; б – элементный состав фаз при охлажде-
нии системы Ni86.97-B6.93-Si6.1; в – фазовый состав системы Ni84.47-Cu2.5-B6.93-Si6.1; г – элементный состав фаз при 
охлаждении системы Ni84.47-Cu2.5-B6.93-Si6.1; д – фазовый состав системы Ni81.97-Cu5-B6.93-Si6.1; е – элементный 
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содержания объемной доли при температуре 1370 К в системе Ni76.97-Cu10-B6.93-Si6.1 
является началом скачкообразного выделения твердых кристаллов никеля. Также 
видно, что форма кривых при концентрации меди 15 ат.% и 20 ат.% идентична. 
Изменение хода кривых при температуре 1470 К соответствует температуре начала 
образования твердых кристаллов никеля и меди и сопутствующему изменению кон-

состав фаз при охлаждении системы Ni81.97-Cu5-B6.93-Si6.1; ж – фазовый состав системы Ni76.97-Cu10 -B6.93-Si6.1; 
з – элементный состав фаз при охлаждении системы Ni76.97Cu10B6.93Si6.1; и – скорость кристаллизации системы 
Ni71.97-Cu15-B6.93 -Si6.1; к – элементный состав фаз при охлаждении системы Ni71.97-Cu15-B6.93-Si6.1; л – фазовый 
состав системы Ni66.97-Cu20-B6.93-Si6.1; м – элементный состав фаз при охлаждении системы Ni66.97-Cu20-B6.93-Si6.1.
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центрации жидкой фазы. После чего оба графика выходят в прямолинейную область, 
показывающую отсутствие образования новых соединений. И лишь при 1045 К, для 
состава Ni81.97-Cu20-B6.93-Si6.1, и при 940 К, для Ni81.97-Cu15-B6.93-Si6.1, происходит резкое 
падение объемной доли фазы ГЦК, обусловленное появлением новой твердой фазы 
Ni3B (M3B_D011). После чего концентрация фазы FCC_L12 линейно уменьшается. 
При этом, уменьшение концентрации может говорить о начале процесса выделения 
чистой меди по границам зерен, что может привести к образованию горячих трещин.

На рис. 2б представлены кривые изменения количества фазы FCC_L12#2 в зави-
симости от температуры. Аналогично предыдущему графику видны: идентичное 
расположение кривых, тенденции изменения состава при кристаллизации и ход 
кривых для составов Ni84.47-Cu2.5-B6.93-Si6.1, Ni81.97-Cu5-B6.93-Si6.1 и Ni76.97-Cu10-B6.93-Si6.1. 
Первое скачкообразное изменение составов наблюдается: при температуре 1540 К 
для Ni84.47-Cu2.5-B6.93-Si6.1, при 1531 К для Ni81.97-Cu5-B6.93-Si6.1 и при 1510 К для 
Ni76.97-Cu10 -B6.93 Si6.1, и обусловлено процессом распада жидкой фазы на жидкость 
и твердую фазу с дальнейшим медленным уменьшением объемной доли первой при 
понижении температуры. Небольшое изменение угла наклона кривых (при темпера-
туре 1055 К для Ni84.47-Cu2.5-B6.93-Si6.1, при 1091 К для Ni81.97-Cu5-B6.93-Si6.1 и при 1186 К 
для Ni76.97-Cu10-B6.93-Si6.1) связано с завершением всех фазовых превращений. После 
этого происходит простое охлаждение покрытия до комнатной температуры.

Рис. 2. Изменение объемной доли фаз: а – FCC_L12, б – FCC_L12#2, в зависимости от содержания меди 
от 2.5 до 20.0 ат. % в оплавленном покрытии Ni-B-Si.
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Системы Ni71.97-Cu15-B6.93-Si6.1 и Ni66.97-Cu20-B6.93-Si6.1 имеют сходные расположе-
ния пиков и ход кривых во всем исследуемом температурном интервале. Темпе-
ратура 1382 К является началом появления фазы FCC_L12#2 в рассматриваемых 
системах. Кривые находятся ниже составов, где содержание меди составляло от 2.5 
до 10 ат.%. Это вызвано тем, что часть меди образует соединения монель-металл или 
копель (температура плавления приблизительно 1593 К [31]), после чего объемная 
доля фазы FCC_L12#2 не претерпевает значительных изменений.
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Рис. 3. Рентгенофазовый анализ (РФА) медной подложки.
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Рис. 4. Рентгенофазовый анализ (РФА) оплавленного покрытия Ni-B-Si.
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Для подтверждения полученных результатов, был проведен эксперимент по оплавле-
нию покрытия системы Ni-B-Si. Лазерная обработка соответствовала следующим пара-
метрам: мощность лазерного излучения 2.1 кВт, фокусное расстояние  – 210  мм, 
скорость обработки 0.033 м/с, расстояние между треками – 1 мм. Более детально 
технология процесса оплавления представлена в работе  [32]. После оплавления 
был проведен рентгенофазовый анализ медной подложки (рис. 3) и оплавленного 
покрытия Ni-B-Si (рис. 4). На дифрактограмме, представленной на рис. 3, имеет-
ся две фазы меди с одинаковыми структурными группами (кубическими). Появ-
ление второй фазы меди обусловлено тем, что съёмка производилась на образце, 
подвергшемся термическому воздействию. Вторая фаза меди имеет измененные 
размеры кристаллической решетки, что объясняет наличие сдвоенных пиков раз-
личной интенсивности.

На рис.  4 видно, что в процессе оплавления происходит активное перемеши-
вание компонентов покрытия с компонентами подложки, что доказано наличием 
пиков NiCu (синие линии). Присутствие пиков меди (красные линии) обусловле-
но захватом медной части образца (исходной заготовки без обработки), что привело 
к большой интенсивности пиков Cu.

ЗАКЛЮЧЕНИЕ

В программном пакете TermoCalc проведено моделирование влияния оплавле-
ния на свойства защитного покрытия Ni-B-Si (Ni – 86.97 ат%, B – 6.93 ат%, Si – 
6.1 ат%), нанесенного на медные фурмы.

В системах Ni86.97-B6.93-Si6.1, Ni84.47-Cu2.5-B6.93-Si6.1, Ni81.97-Cu5-B6.93 -Si6.1, Ni76.97-Cu10-
B6.93-Si6.1, Ni71.97-Cu15-B6.93-Si6.1, Ni66.97-Cu20-B6.93-Si6.1 методом Шейла исследованы 
скорости кристаллизации в интервале температур от 1300 К до 800 К и фазы, обра-
зующиеся при охлаждении.

По результатам рентгенофазового анализа определено, что процесс оплавления 
покрытия лазерным излучением приводит к активному перемешиванию и последу-
ющему образованию соединений состава Ni-Cu по всей зоне обработки. В процессе 
оплавления происходит активное перемешивания компонентов покрытия (Ni-B-Si) 
с компонентами подложки (Cu).

По результатам исследований выявлено, что наилучшие результаты имеют 
составы с содержанием меди порядка 15-20 ат.%. В связи с тем, что в этом концен-
трационном интервале происходит наиболее полное взаимодействие атомов меди, 
образующихся на границах зерен в процессе лазерного оплавления покрытия на  
никелевой основе, напыленного газотермическим методом, с никелем с образова-
нием медно-никелевого сплава (монель-металла).
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Copper and alloys are widely used in parts of metallurgical equipment. Due to high heat 
capacity and reflectivity of IR radiation, copper parts have found application in water-
cooled blast furnace elements, such as tuyeres, which are subject to active gas-abrasive, 
erosive and other types of wear and gas corrosion. Copper and its alloys have low resistance 
to wear and corrosion. To increase the resistance of copper parts, thermal barrier coatings 
of the Ni–B–Si, Ni–Cr–Al–Y and ZrO2 systems are offered. However, the first layers of 
the coating have low adhesion, and consequently, low strength of the first and subsequent 
layers. Laser remelting solves the problem of adhesion of the first layer to copper and the 
remaining layers to the fused layer. Using the CALPHAD methods in the TermoCalc 
software package (software version number 2024.1.132110-55), the effect of reflow on the 
properties of the protective coating of the Ni-B-Si system was simulated. The following 
composition was chosen as the base: Ni – 86.97 at.%, B – 6.93 at.%, Si – 6.1 at.%. When 
laser radiation is applied to a coating applied by the gas-thermal method, active interac-
tion of the coating components with copper is observed, forming a continuous coating 
containing new phases and chemical elements. The appearance of some of these phases 
occasionally leads to cracking due to the formation of a stable compound of copper-nickel 
alloy (monel metal), which has relatively low plasticity. Using X-ray phase analysis data, it 
was confirmed that during the melting process, active mixing of the coating components 
(Ni–B–Si) with the substrate components (Cu) occurs, forming a stable compound of Cu 
with Ni. In this regard, using mathematical modeling, the density changes were predicted 
and the crystallization rates were determined using the Sheil method, as well as the phases 
formed during cooling in the coating, namely: Ni86.97-B6.93-Si6.1, Ni84.47-Cu2.5-B6.93-Si6.1,  
Ni81.97Cu5B6.93Si6.1, Ni76.97Cu10B6.93Si6.1, Ni71.97Cu15B6.93Si6.1, Ni66.97Cu20B6.93Si6.1. Using 
calculation methods, based on the provisions of thermodynamics, the process of laser 
melting is described during heating from 1750 K to 3000 K and subsequent cooling from 
1750 K to 500 K. When studying the melting process, for all compositions it was deter-
mined that a copper content in the coating of about 15-20 at.% is favorable for the for-
mation of a good quality coating, since at these concentrations the most complete release 
of copper atoms from the grain boundaries occurs, their transition to the surface layers of 
the coating and their binding with nickel into stable compounds of the monel-metal type.

Keywords: thermal spray coating, CALPHAD, TermoCalc, Cu, Ni-B-Si, laser surface 
melting, monel-metal, X-ray phase analysis
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