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В теплоотводящих элементах ядерных энергетических установок на  быстрых 
нейтронах в качестве жидкометаллических теплоносителей используют сплавы 
на основе системы калий-свинец. В связи с практической значимостью дан-
ного сплава был проведен полуэмпирический расчет теплофизических харак-
теристик (теплоемкости, коэффициента теплового линейного расширения, 
плотности, теплопроводности, температуропроводности и удельного электро-
сопротивления) калия, свинца и расплава свинца с калием. Для вычислений 
были использованы массивы согласованных между собой экспериментальных 
данных, соотношения авторской модели двухфазной локально-равновесной 
области и  модифицированное правило смешения компонентов. В  формиро-
вание тепловых свойств компонентов и их сплавов вносят вклад как явления 
в любой малой окрестности точки образца (локальный уровень), так и коллек-
тивные феномены реакций всех точек сплава (субстанциональный уровень). 
Указано на  существование особенностей на  температурных зависимостях 
калия и  свинца в  виде пиков, ям  и скачков, а  также на  наследование неко-
торых графических особенностей температурных кривых компонентов при 
формировании тепловых свойств расплава. С  помощью аппроксимации экс-
периментальных данных расплава установлено исчезновение некоторых осо-
бенностей при образовании сплава. На  экспериментально неисследованных 
температурных интервалах продемонстрировано поведение теплофизических 
характеристик компонентов, а тепловые свойства расплава отображены в виде 
таблицы. Указано на необходимость проведения дополнительных эксперимен-
тальных работ с целью проверки проведенных расчетов и уточнения поведения 
теплофизических характеристик компонентов и их сплава на неисследованных 
интервалах температур.
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ВВЕДЕНИЕ

Экспериментальные исследования теплофизических свойств калия, свинца и их 
расплавов [1–20] связаны с использованием металлов в качестве жидкометалличе-
ских теплоносителей в ядерных энергетических установках (ЯЭУ) [21, 22]. В част-
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ности, для ЯЭУ на быстрых нейтронах проекта БРЕСТ в качестве теплоотводящих 
элементов используют сплавы свинца с калием. Разработку теплоносителей для ЯЭУ 
новых поколений проводят зачастую путем изменения состава известных сплавов 
с  помощью специальных добавок. Поэтому экспериментальное и  теоретическое 
исследование теплофизических свойств сплавов свинца с калием и их компонентов 
является перспективной и актуальной задачей, она требует более точных измерений 
тепловых характеристик как сплавов, так и их компонентов в широком диапазоне 
температур.

Числовые значения теплофизических характеристик можно получить тремя 
способами  [23]: экспериментальным измерением, вычислением по  соотношениям 
известных общепризнанных моделей или использованием аппроксимационных мате-
матических зависимостей. Расхождения в значениях характеристик при их измерении 
разными авторами (см., например, данные по  температуропроводности в  [11–13]) 
обусловлены предварительной подготовкой образца (вакуумирование, термический 
отжиг, обработка давлением и т. п.), использованием разных типов измерительной 
аппаратуры и атмосферы в ней, наличием летучих примесей в образце, протеканием 
в  нем кинетических процессов с  тепловыми эффектами и  т. д. Поэтому возрастает 
роль теоретического моделирования жидкометаллических систем. Для расчета тепло-
физических свойств сплава K9.3Pb90.7 и его компонентов (по сплавам других составов 
такие более-менее полные массивы теплофизических результатов в доступной автору 
научной литературе отсутствуют) отбирались согласующиеся между собой массивы 
экспериментальных данных [1–10, 15–19].

При описании тепловых свойств вещества в  конденсированном состоянии 
в  настоящее время доминирующее положение занимает электрон-фононная тео-
рия  [24–27]. Она качественно верно описывает изменения теплового состояния 
вещества, но полученные в ней функциональные зависимости не описывают коли-
чественно экспериментальные факты. Так, модели Эйнштейна, Дебая и их версии 
не  объясняют рост теплоемкости при увеличении температуры, наличие скачков 
и других особенностей на температурных зависимостях теплоемкости. Модели тепло-
проводности описывают наличие ее пика вблизи абсолютного нуля как результат 
взаимодействия электронов с примесями [25]. Однако пик может отображать про-
текание кинетического процесса с тепловым эффектом как в отдельно взятой ква-
зичастичной подсистеме, так и в их совокупности. Другими словами, пик порож-
дается чередой перекрывающихся фазовых переходов в подсистемах металлов и их 
сплавов. Несмотря на  недостатки количественного описания, физико-математи-
ческая имитация является предпочтительной при описании конденсированного 
состояния вещества.

Зачастую экспериментальные данные сглаживаются степенными функция-
ми [11–19, 28]. Такой подход ограничен применением аппроксимационных выра-
жений на конечных температурных интервалах и не дает возможности спрогнозиро-
вать изменения характеристик вне указанных диапазонов температур. Применение 
методов молекулярной динамики (см., например,  [29]) лимитируется неизвестны-
ми потенциалами межчастичных взаимодействий, использованием циклических 
граничных условий, невозможностью описания скачков и  других особенностей 
непрерывными функциями на  температурных зависимостях теплофизических 
величин. Поэтому возникает необходимость использования новых подходов при 
моделировании тепловых характеристик вещества.
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Одной из  основных проблем при расчете теплофизических свойств вещества 
является описание их поведения одной непрерывной функцией на интервале темпе-
ратур от абсолютного нуля до температуры испарения, а также проведение согласо-
ванных между собой вычислений в рамках одной методической схемы. В работе [30] 
была предложена модель двухфазной локально-равновесной области, которая затем 
была успешно применена для расчета теплоемкостей и коэффициентов теплового 
линейного расширения различных веществ [31–34] в диапазоне температур от абсо-
лютного нуля до  температуры испарения. Следует отметить, что предложенная 
модель позволяет описывать особенности на температурных зависимостях теплофи-
зических свойств [35]: конечные скачки; пики, ямы и их чередование. Так как тепло-
физические характеристики (теплоемкость С, Дж/(моль⋅K); коэффициент теплового 
линейного (объемного) расширения αL (αV), K‒1; плотность ρ, кг/м3; теплопрово-
дность λ, Вт/(м⋅K) и  температуропроводность а, м2/с) связаны между собой опре-
деленными соотношениями, то для их расчета можно использовать температурные 
функции, полученные в рамках модели [30–35].

Таким образом, целью данной работы является использование согласованных 
между собой экспериментальных данных для калия и свинца, модифицированно-
го правила смешения компонентов и температурных функций модели двухфазной 
локально-равновесной области для полуэмпирического феноменологического 
расчета теплофизических свойств сплава K9.3Pb90.7 и его компонентов в диапазоне 
температур от абсолютного нуля до температуры испарения, а также теоретическая 
проверка эффекта наследования свойств компонентов при образовании сплава.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Теплоемкость

Согласно модели двухфазной локально-равновесной области, теплоемкость 
вещества описывается формулой [32–35]

	 C C Cb k= + .	 (1)

Первое слагаемое в (1)

	 C k T k T xb j j
j

= +∑1 2( ) ( ) 	 (2)

определяет вклад в  теплоемкость электронного газа, фононной и  других квазича-
стичных подсистем. Будем считать коэффициенты k1(T) и k2j(T) линейными функ-
циями температуры: k1(T)  =  k10 + k11T, k2j(T)  =  k20j + k21jT. Формула (2) описывает 
базисную линию теплоемкости, при этом второе слагаемое в (2) задает также воз-
можные скачки (структурные превращения) на кривой теплоемкости. Постоянный 
коэффициент k11, Дж/(моль К) определяет тангенс угла наклона участков прямо-
линейного роста вблизи абсолютного нуля и при высоких температурах. Постоян-
ные коэффициенты k20j, Дж/(моль К2) связаны с вкладом в теплоемкость явлений 
упорядочения в подсистеме j, отсутствие этого индекса указывает на то, что вто-
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рое слагаемое в (2) описывает феномены в фононной подсистеме. Теплоемкость 
по формуле (2) вычисляется при температуре T [K] и в подсистеме j объемной доле 
упорядочивающейся фазы xj, равной

	 x b T Tj j xj= − −( ){ }1 1 2th [ / ] / .	 (3)

Величина постоянного безразмерного коэффициента bj в равенстве (3) опреде-
ляется энтальпией процесса упорядочения и температурой Txj, при которой соста-
вы сосуществующих фаз равны между собой. При достаточно больших значениях 
параметра bj  второе слагаемое в (2) описывает скачок (структурное превращение) 
на базисной линии теплоемкости.

Второе слагаемое в (1)

	 C k T uk j j
j

=∑ 3 ( ) 	 (4)

связано с вкладом в теплоемкость кинетических процессов, внутренней перестрой-
ки и фазовых переходов (пики и ямы с округлыми и острыми вершинами, а также 
их  чередование на  базисной кривой теплоемкости); k3j(T)  =  k30j + k31jT, Дж/(моль 
К), k30j и  k30j ‒ константы, uj  =  dxj/dT. Аппроксимационные функции для расчета 
теплоемкостей и других теплофизических характеристик калия и свинца приведены 
в табл.  1 и 2 соответственно.

Коэффициент теплового линейного (объемного) расширения [КТЛР (КТОР)]

Вследствие связи между теплоемкостью и КТЛР в виде второго правила Грюнай-
зена [36, с.14], КТЛР рассчитывался по формуле:

	 αL j j
j

j j
j

q T q T x q T u⋅ = + +∑ ∑106
1 2 3( ) ( ) ( ) ,	 (5)

где q1, q2j и q3j ‒ постоянные коэффициенты приведены в табл.  1 и 2. Отметим, что 
КТОР αV связан с КТЛР αL приближенным равенством (см., например, [37, с.46])

	 α αV L≈3 .	 (6)

Плотность

Плотность массы единичного объема металлов и сплавов зависит от массы обра-
зующих атомов, их  кристаллографического структурирования и  взаимодействия 
между собой. Вычисление плотностей калия K (атомная масса Ma1 = 39.098·10‒3, кг/
моль) и свинца Pb (Ma2 = 207.2·10‒3, кг/моль) проводились по модифицированным 
формулам [38]

	 d d T d TV= + − +0 1 293[ ( )] ( )α ∆ ,	 (7)

где параметры приведены в табл.1 и 2.
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Теплопроводность

Теплопроводность характеризует распространение тепла в материале. При тем-
пературах, близких к  абсолютному нулю, температурная зависимость теплопро-
водности характеризуется пиком. Его можно смоделировать функцией вида (4) 
или суммой таких функций. Теплопроводности калия K и свинца Pb вычислялись 
по формулам из табл.1 и 2

	 λ= + +∑ ∑g T g T x g T uj j
j

j j
j

1 2 3( ) ( ) ( ) .	 (8)

Таблица 1. Параметры модели двухфазной локально-равновесной области для расчета тепло-
физических характеристик калия K и свинца Pb

Функция

Теплоемкость
C T x T u u u= ⋅ + ⋅ + ⋅ ⋅ + ⋅ + ⋅0 0025 32 3 0 43 3 6 611 2 3. . [ . . ]; x T= − ⋅ −{ }1 0 82 35 1 2th[ . ( / )] / ;

u dx dT1 1= / ; x T1 1 7 8 336 53 1 2= − ⋅ −{ }th[ . ( . / )] / ;

u dx dT2 2= / ; x T2 1 2 435 1 2= − ⋅ −{ }th[ ( / )] / ;

u dx dT3 3= / ; x T3 1 0 7 5900 1 2= − ⋅ −{ }th[ . ( / )] /

КТЛР
αL y T v v v⋅ = ⋅ + ⋅ ⋅ + ⋅ + ⋅10 87 3 4 6 26

1 2 3[ . ] ; y T= − ⋅ −{ }1 0 67 40 1 2th[ . ( / )] / ;

v dy dT1 1= / ; y T1 1 2 4 240 1 2= − ⋅ −{ }th[ . ( / )] / ;

v dy dT2 2= / ; y T2 1 3 7 320 1 2= − ⋅ −{ }th[ . ( / )] / ;

v dy dT3 3= / ; y T3 1 11 7 336 65 1 2= − ⋅ −{ }th[ . ( . / )] /

Плотность
d T xL d= ⋅ + ⋅ ⋅ ⋅ − − ⋅−869 1 4 1 10 293 306[ . ( )]α ; x . Td = − ⋅ −{ }1 2000 336 65 1 2th[ ( / )] /

Теплопроводность
λ= ⋅ + ⋅ − ⋅ + ⋅ ⋅ − ⋅ ⋅0 026 99 43 2688 2 0 04561 2 1. . .T z z T w T z ; 

z T= − ⋅ −{ }1 1 7 12 1 2th[ . ( / )] / ;

z T1 1 2000 336 65 1 2= − ⋅ −{ }th[ ( . / )] / ; w dz dT2 2= / ; z T2 1 2 6 6 1 2= − ⋅ −{ }th[ . ( / )] /

Удельное электросопротивление
ρ= ⋅ + ⋅ − ⋅ + ⋅ ⋅ + ⋅ ⋅0 002 4 12 386 0 0471 2 1. .T s s T p T s ; s T= − ⋅ −{ }1 0 56 480 1 2th[ . ( / )] / ;

s . T1 1 2000 336 86 1 2= − ⋅ −{ }th[ ( / )] / ; p ds dT2 2= / ; 

s T2 1 1 2 3500 1 2= − ⋅ −{ }th[ . ( / )] /
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Температуропроводность

По определению температуропроводность рассчитывалась по формуле [39, С. 8]

	 a = λ /(c·d) ,	 (9)

где λ ‒ теплопроводность,  c = C/Ma ‒ удельная теплоемкость, Ma, 10‒3 [кг/моль] ‒ 
атомная (молекулярная) масса металла (расплава), d ‒ плотность.

Таблица 2. Параметры модели для расчета подгоночной функции f(T)

Функция
Теплоемкость

C T x T u u= ⋅ + ⋅ + ⋅ ⋅ + ⋅0 0026 31 6 1 6 0 141 2. . [ . . ] ; x T= − ⋅ −{ }1 0 77 27 1 2th[ . ( / )] / ;

u dx dT1 1= / ; x T1 1 1 8 600 61 1 2= − ⋅ −{ }th[ . ( . / )] / ;

u dx dT2 2= / ; x T2 1 14 6 790 1 2= − ⋅ −{ }th[ . ( / )] /

КТЛР*

αL T y T v v⋅ = ⋅ + ⋅ + ⋅ − ⋅ + ⋅10 0 0086 31 8 0 8 1 26
1 2. . [ . . ] ; y T= − ⋅ −{ }1 0 8 26 1 2th[ . ( / )] / ;

v dy dT1 1= / ; y T1 1 4 6 600 61 1 2= − ⋅ −{ }th[ . ( . / )] / ;

v dy dT2 2= / ; y T2 1 5 2 790 1 2= − ⋅ −{ }th[ . ( / )] /

Плотность
d T xL d= ⋅ + ⋅ ⋅ ⋅ − − ⋅−11350 1 2 85 10 293 340 46[ . ( )] .α ; 

x Td = − ⋅ −{ }1 2000 600 61 1 2th[ ( . / )] /

Теплопроводность
λ= ⋅ − ⋅ + ⋅ ⋅ + ⋅ + ⋅ − ⋅43 6 16 2700 134 6 5 6 0 0081 2 3 4 5. [ . . . ]z z T w w w z ;

z T= − ⋅ −{ }1 0 86 5 1 2th[ . ( / )] / ; z T1 1 2000 600 61 1 2= − ⋅ −{ }th[ ( . / )] / ;

w dz dT2 2= / ; z T2 1 3 6 2 9 1 2= − ⋅ −{ }th[ . ( . / )] / ;

w dz dT3 3= / ; z T3 1 1 6 10 1 2= − ⋅ −{ }th[ . ( / )] / ;

w dz dT4 4= / ; z T4 1 3 1 1100 1 2= − ⋅ −{ }th[ . ( / )] / ; z T5 1 6 2 100 1 2= − ⋅ −{ }th[ . ( / )] /

Удельное электросопротивление
ρ= ⋅ + ⋅ + ⋅ + ⋅ ⋅ − ⋅ − ⋅ − ⋅0 06 24 46 2 0 6 1 4 0 0231 2 3 4 5. [ . . . ]T s s T p p p s ;

s T= − ⋅ −{ }1 2 480 1 2th[ ( / )] / ; s T1 1 2000 600 61 1 2= − ⋅ −{ }th[ ( . / )] / ;

p ds dT2 2= / ; s T2 1 1 4 270 1 2= − ⋅ −{ }th[ . ( / )] / ;

p ds dT3 3= / ; s T3 1 6 500 1 2= − ⋅ −{ }th[ ( / )] / ;

p ds dT4 4= / ; s T4 1 3 3 945 1 2= − ⋅ −{ }th[ . ( / )] / ; s T5 1 0 8 789 1 2= − ⋅ −{ }th[ . ( / )] /
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Удельное электросопротивление

Исходя из развитого подхода, аппроксимационная функция для расчета удель-
ного электросопротивления была выбрана в виде

	 ρ⋅ = + +∑ ∑108
1 2 3s T s T x s T uj j

j
j j

j

( ) ( ) ( ) .	 (10)

Модифицированное правило смешения.

Для проведения феноменологического расчета теплофизических характери-
стик бинарного сплава воспользуемся правилом смешения его компонентов  [25]. 
Для  получения сплава заданного состава со  значением теплового свойства As(T) 
из  компонентов с  характеристиками Ai(T) и  мольными ni (массовыми mi, i  =  1,2) 
долями правило смешения компонентов имеет вид:

	 A T n A T n A Ts ( ) ( ) ( )= +1 1 2 2 .	 (11)

Формула (11) для большинства сплавов дает довольно грубое приближение 
к экспериментальным данным о теплофизических свойствах сплава, поэтому пред-
лагается ее изменение в виде

	 A T A T f Ts( ) ( ) ( )= + ,	 (12)

здесь f T( )  ‒ подгоночная функция.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл.  3 приведены экспериментальные данные и результаты расчета теплоем-
костей калия и свинца по формулам (1)‒(4) с учетом табл.  1 и 2. Из табл.  3 видно, 
что теоретические значения теплоемкостей компонентов отличаются от большин-
ства экспериментальных величин не более, чем на 5 %. На рис. 1 показаны темпера-
турные зависимости КТЛР калия и свинца. В табл.  4 отображены эксперименталь-
ные данные и результаты расчета плотностей калия и свинца по формулам из табл.  1 
и 2 соответственно.

В табл.  5 представлены экспериментальные данные и результаты расчета тепло-
проводностей калия и свинца по формулам из табл.  1 и 2 соответственно. На рис. 2 
изображены пики теплопроводностей вблизи абсолютного нуля, а на рис. 3 и 4 ‒ 
графики температурных функций температуропроводностей и удельных электро-
сопротивлений компонентов исследуемого сплава, рассчитанные по  формулам 
из табл.  1 и 2.

Воспользуемся формулами (11) и (12) для аппроксимации экспериментальных 
данных из работ [14,15]. В табл.  6 собраны экспериментальные и расчетные данные 
по теплофизическим свойствам сплава K9.3Pb90.7 (молекулярная масса сплава рассчи-
тывалась по  формуле (11) с  дополнительным слагаемым 12.43). Теплофизические 
свойства сплава (при n1=0.093, n2=0.907) вычислялись по формуле (12).
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Теплоемкость: f T T xC( ) . .=− ⋅ ⋅ +0 0046 5 0 , x TC = − ⋅ −( ){ }1 3 8 900 1 2th . [ / ] / .
Из табл.  6 видно, что на расчетную кривую достаточно неплохо укладываются 

экспериментальные данные [14].
Плотность: f T( )= 0 , что соответствует формуле (11). Из  табл.   6 видно, что 

результаты вычислений адекватны данным [15].

Таблица 3. Теплоемкости C, Дж/(моль · К) калия и свинца

Т, К
Калий Свинец

[1] [3] [4] Расчет [1] [2] [4] [9] [10] Расчет

20
40
80

100
150
200
250
300
350
400
500
600
700
800
900

1000

‒
‒
‒

24.67
‒

26.82
‒

29.68
‒

31.55
30.73
30.14

‒
29.83

‒
30.73

‒
‒
‒
‒
‒
‒
‒

29.95
32.06
31.55
30.73
30.18
29.87
29.83

‒
‒

9.81
19.31
23.85

‒
26.04

‒
28.03

‒
‒

31.47
‒

30.11
‒
‒
‒

30.97

7.36
17.90
23.31
24.28
25.54
26.45
27.80
30.30
32.21
31.59
30.74
30.08
29.78
29.75
29.94
30.36

‒
‒
‒

24.20
‒

25.53
‒

26.42
‒

27.52
28.51
29.44

‒
29.69

‒
29.03

11.00
19.56
23.62
24.45
25.28
25.90
26.31
26.94

‒
27.35
28.39
29.42

‒
‒
‒
‒

10.98
19.56
23.62

‒
25.28

‒
26.31

‒
‒

27.77
‒

29.84
‒
‒
‒

29.42

10.98
19.56
23.62
24.45
25.28
25.90
26.31
26.94
29.42

‒
‒
‒
‒
‒
‒
‒

‒
‒
‒

24.20
‒

25.53
‒

26.42
‒

27.52
28.51
29.44

‒
29.69

‒
29.03

11.69
19.78
23.43
24.11
25.02
25.52
25.89
26.25
26.77
27.51
29.05
29.51
29.34
29.73
29.30
29.00

Рис.  1. Температурные зависимости КТЛР калия (красная линия) и  свинца (синяя линия): Δ ‒ дан-
ные [2], ○ ‒ [4], ♦ ‒ [6], ■ ‒ [9].
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Теплопроводность: f T z T w z( ) . . [ . . ]=− + ⋅ − ⋅ ⋅ − ⋅27 3 14 5 4 7 0 01751 2 3 , �  
z T1 1 2000 600 61 1 2= − ⋅ −( ){ }th [ . / ] / , w dz dT2 2= / , z T2 1 3 2 1100 1 2= − ⋅ −( ){ }th . [ / ] / ,  
z T3 1 1 2 600 1 2= − ⋅ −( ){ }th . [ / ] / . Из табл.  6 видно, что результаты вычислений согла-
суются с данными [14].

Таблица 5. Теплопроводности λ, Вт/(м·К) калия и свинца

Т, К
Калий Свинец

[1] [4] Расчет [1] [2] [4] [10] Расчет

20
40
80

100
150
200
250
300
350
400
500
600
700
800
900

1000

‒
‒
‒

104.7
‒

103.1
‒

102.1
‒

52.5
48.1
44.3

‒
37.4

‒
31.8

170
115
108
‒

105
104
‒

102
‒
52
‒
44
‒
37
‒
31

183.83
116.29
104.27
103.10
102.49
102.98
103.83
104.84
46.99
45.87
43.71
41.63
39.58
37.56
35.55
33.55

‒
‒
‒

39.2
‒

36.5
‒
35
‒

33.7
32.8
31.5

‒
19
‒

21.4

70
50
‒
‒

36.3
35
‒

34.9
‒
‒
‒
‒
‒
‒
‒
‒

59
45
41
‒
38
37
‒
35
‒
34
‒
31
‒
19
‒
22

‒
‒
‒

39.7
‒

36.7
‒

35.3
‒
34

32.9
31.4

‒
19
‒

21.4

70.24
45.66
39.92
38.77
37.10
36.31
35.70
35.16
34.67
34.21
33.36
32.54
17.10
18.66
20.78
21.83

Таблица 4. Плотности ρ, кг/м3 калия и свинца

Т, К
Калий Свинец

[3] [6] [8] Расчет [10] Расчет Т, К [3] [5] Расчет

20
40
80

100
150
200
250
300
350
400
500
600
700
800
900

1000

‒
‒
‒
‒
‒
‒
‒

857
825
814
790
767
‒

720
‒

672

905
‒

897
894
886
877
868
858
‒
‒
‒
‒
‒
‒
‒
‒

‒
‒
‒
‒
‒
‒
‒

863
‒

813
788
765
740
716
690
665

881
896
899
897
891
881
866
849
831
816
790
768
746
723
699
674

‒
‒
‒

11531
‒

11435
‒

11340
‒

11245
11128
11059

‒
10430

‒
10198

11459
11518
11518
11507
11472
11432
11389
11344
11297
11249
11153
11046
10569
10424
10310
10194

603
623
653
673
723
753
773
823
853
873
923
953
973

1023
1053
1073

‒
10658

‒
‒

10536
‒
‒

10418
‒
‒

10302
‒
‒

10168
‒
‒

10670
10650
10610
10580
10520
10480
10460
10400
10360
10340
10270
10240
10210
10150
10110
10090

10708
10682
10641
10611
10533
10488
10459
10396
10362
10339
10284
10250
10226
10166
10128
10102
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Температуропроводность: f T z T w z( ) . [ . . ]=− + ⋅ − ⋅ ⋅ − ⋅23 2 9 4 2 0 01651 2 3 ,�  
z T1 1 2000 600 61 1 2= − ⋅ −( ){ }th [ . / ] / , w dz dT2 2= / , z T2 1 3 1120 1 2= − ⋅ −( ){ }th [ / ] / , 
z T3 1 1 2 700 1 2= − ⋅ −( ){ }th . [ / ] / . Из табл.  6 видно, что результаты вычислений адек-
ватны данным [14].

Рис.  2. Пики теплопроводностей калия (красная линия) и  свинца (синяя линия): ● ‒ данные  [1], 
Δ ‒ [4], ○ ‒ [6].

Рис. 3. Зависимости температуропроводностей калия (красная линия) и свинца (синяя линия) от темпе-
ратуры: ● ‒ данные [1], ◊ ‒ [5], ▲ ‒ [10].
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Удельное электросопротивление: В последнем столбце табл.  6 приведена оценка 
удельного электросопротивления сплава K9.3Pb90.7 по формуле (11).

Проведенные вычисления показывают, что формирование теплофизических 
свойств компонентов и сплава K9.3Pb90.7 происходит в результате реализации стати-

Рис. 4. Температурные графики удельных электросопротивлений калия (красная линия) и свинца (синяя 
линия): ● ‒ данные [1], □ ‒ [3], ◊ ‒ [5], ■ ‒ [43].

Таблица 6. Теплофизические свойства сплава K9.3Pb90.7 (Ms = 203.86·10‒3 кг/моль)

Т,
К

CP,
Дж/(моль·К)

d,
кг/м3

λ,
Вт/(м·К)

а ·106,
м2/с

ρ·108,
Ом·м

[14] Расчет [14] Расчет [14] Расчет [14] Расчет Расчет

20
40
80

100
150
200
250
300
350
400
500
600
700
800
900

1000

‒
‒
‒
‒
‒
‒
‒
‒
‒
‒
‒

34.86
34.05
33.23
32.41
31.60

12.76
23.07
28.32
29.26
30.50
31.36
32.63
34.94
36.72
36.22
35.52
34.89
34.33
33.55
32.56
31.62

‒
‒
‒
‒
‒
‒
‒

10210
10175
10136
10048
9561
9434
9306
9178

‒

10330
10386
10386
10376
10344
10307
10267
10226
10179
10135
10048
9950
9521
9389
9285
9179

‒
‒
‒
‒
‒
‒
‒
‒
‒
‒
‒

11.02
12.36
13.50
14.46
15.23

53.50
24.93
18.60
17.45
15.89
15.24
14.88
14.78
9.45
9.61

10.33
11.32
12.40
13.50
14.47
15.29

‒
‒
‒
‒
‒
‒
‒
‒
‒
‒
‒

6.73
7.85
8.91
9.89
10.81

181.78
41.43
23.05
20.63
17.86
16.64
15.54
14.07
5.27
5.12
5.57
6.74
7.85
8.65
9.93

10.79

1.13
2.25
4.53
5.75
9.27

12.72
15.90
19.51
24.24
28.93
36.98
45.97
92.88
97.53

102.30
107.63
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ческих явлений (локальные значения характеристик) и протекания кинетических 
процессов в  подсистемах (возникновение особенностей на  температурных зави-
симостях). Наблюдаемые феномены определяются индивидуальными свойствами 
частиц и квазичастиц, а также коллективной реакцией образца на смену внешних 
условий. Если построить график температурной зависимости теплоемкости свинца 
по данным табл.  3, то при температурах Тm = 600.61 К (температура плавления свин-
ца) и Тq = 800 К наблюдаются 2 пика. Первый пик отображает реализацию кине-
тического процесса в  виде агрегатного размытого фазового перехода I  рода типа 
кристалл-жидкость. Второй пик, по-видимому, связан с достижением коэффици-
ентом теплового линейного расширения экстремального значения (см. рис. 1). При 
этом в  области предплавления при температуре Т  =  545.3  К  наблюдается скачок 
понижения плотности и  теплопроводности свинца. Отметим, что после скачко-
образного снижения теплопроводность свинца начинает увеличиваться с  ростом 
температуры также, как и его температуропроводность.

Определенные особенности поведения температурных зависимостей теплофи-
зических характеристик компонентов наследуются сплавом. Так при построении 
графика теплоемкости сплава возникает пик с  вершиной в  области температур, 
близких к  температуре формирования вершины аналогичного пика при постро-
ении графика теплоемкости калия (фазовый переход I  рода типа кристалл-жид-
кость). При температуре Т = 545.3 К наблюдается скачок на температурной зави-
симости КТЛР сплава (см. рис. 4). Скачки на графиках теплопроводностей калия 
и  свинца отражаются скачками не  только на  графиках их  температуропроводно-
стей, но и на графиках тепло- и температуропроводности сплава K9.3Pb90.7. Эффект 
наследования сплавом некоторых теплофизических характеристик компонентов 
подтвержден экспериментально [40–42]. Поэтому использование представленной 
методической схемы расчета тепловых свойств сплавов позволит уменьшить коли-
чество проводимых экспериментов.

ЗАКЛЮЧЕНИЕ

Полученные результаты расчета не только качественно, но и количественно 
верно описывают температурные зависимости теплофизических характеристик 
калия, свинца и их сплава K9.3Pb90.7. Они подтвердили применимость соотноше-
ний модели двухфазной локально-равновесной области и  модифицированного 
правила смешения компонентов при имитации тепловых свойств компонентов 
и их сплава K9.3Pb90.7. Введение подгоночной функции в правило смешения свя-
зано с  неидеальностью сплава, т.е. отклонением экспериментальных данных 
реального образца от  температурных кривых теплофизических свойств модели 
идеальных фаз. В  процессе вычислений подтверждено существование эффекта 
наследования сплавом определенных особенностей поведения тепловых величин 
компонентов. Спрогнозированные значения теплофизических характеристик 
на  неисследованных температурных интервалах нуждаются в  эксперименталь-
ной проверке.
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APPLICATION OF THE MODIFIED MIXING RULE COMPONENTS  
AND OF THEIR DATA FOR CALCULATION  

OF THERMOPHYSICAL PROPERTIES OF LEAD-POTASSIUM ALLOYS

S. V. Terekhov*
Donetsk Institute of Physics and Technology A.A. Galkina, Donetsk, Russia

*e-mail: svlter@yandex.ru

Alloys based on the potassium-lead system are used as liquid-metal coolants in heat-dis-
sipating elements of  fast neutron nuclear power plants. Due to  the practical impor-
tance of this alloy, a semi-empirical calculation of thermophysical characteristics (heat 
capacity, coefficient of thermal linear expansion, density, thermal conductivity, thermal 
diffusivity and specific electrical resistance) of potassium, lead and melt of  lead with 
potassium was carried out. For calculations we  used the arrays of  experimental data 
coordinated with each other, relations of the author’s model of two-phase local-equi-
librium region and the modified rule of  mixing of  components. In  the formation 
of thermal properties of components and their alloys give as phenomena in any small 
neighborhood of  the sample point (local level), and collective phenomena of  reac-
tions of all points of the alloy (substantive level) to temperature changes. The existence 
of features in the temperature dependences of potassium and lead in the form of peaks, 
pits and jumps, as well as the inheritance of some graphical features of the temperature 
curves of components in the formation of thermal properties of the melt are indicated. 
By means of approximation of  the experimental data of  the melt, the disappearance 
of some features during the formation of the alloy was established. On experimental-
ly unexplored temperature intervals the behavior of  thermophysical characteristics 
of components is demonstrated, and thermal properties of the melt are displayed in the 
form of tables. It is pointed out the necessity of additional experimental work to verify 
the calculations performed and to clarify the behavior of thermophysical characteristics 
of the components and their alloy at unexplored temperature intervals.

Keywords: potassium, lead, alloy, heat capacity, coefficient of thermal linear expansion, 
density, thermal conductivity, thermal diffusivity
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