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Дан обзор имеющихся экспериментальных данных (как наших, так и других 
исследователей) по электропроводности ZrCl4–содержащих солевых распла-
вов, для которых давление насыщенных паров ZrCl4 над ними P ⩽ 1 атм. Эти 
расплавы имеют существенный потенциал практического применения. Такие 
смеси делятся на высокотемпературные, с концентрацией 0–30 мол. % ZrCl4, 
и  на низкотемпературные, с  более узким содержанием ZrCl4 50–75 мол. %. 
Установлено, что электропроводность всех расплавленных ZrCl4–содержа-
щих смесей возрастает при повышении температуры, уменьшении концентра-
ции тетрахлорида циркония и при замене расплава соли-растворителя в ряду 
от CsCl к LiCl. Полученные экспериментальные данные обобщены и обсуж-
дены с  учетом имеющихся сведений о  структуре расплавленных смесей. 
Электропроводность высокотемпературных расплавов MCl–ZrCl4 (0–30 мол. 
% ZrCl4; М – щелочной металл), находится в пределах 0.6–3.1 См/см, что зна-
чительно выше, чем у  легкоплавких расплавленных смесей тех же  хлоридов 
(0.1–0.5 См/см) с высоким содержанием ZrCl4 (55–75 мол. %). Установлено, 
что использование низкоплавких солевых растворителей, например, эвтекти-
ки LiCl-KCl, позволяет на сотни градусов расширить диапазон существования 
ZrCl4–содержащих расплавов в сторону более низких температур и давлений 
насыщенных паров при достаточно высоких величинах электропроводности 
(0.9–2.8 См/см). Это дает дополнительные преимущества для организации 
различных технологических процессов.

Ключевые слова: ZrCl4, электропроводность, расплавленные соли, хлориды 
щелочных металлов

DOI: 10.31857/S0235010625020076

ВВЕДЕНИЕ

Метод хлорирования циркониевых концентратов является одним из основных 
в  технологии получения циркония. Он  позволяет извлекать из  перерабатываемо-
го сырья цирконий в  виде тетрахлорида — в  форме, удобной для его дальнейшей 
переработки металлотермическим или электролитическим методами [1–5]. Метал-
лический Zr  производят электролизом ZrCl4–содержащих расплавленных солей. 
Для  совершенствования и  разработки новых технологических процессов нужны 
сведения об  электропроводности растворов тетрахлорида циркония в  расплавлен-
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ных хлоридах щелочных металлов. Электропроводность является одним из важных 
свойств, которые нужно знать для грамотной организации электролитических про-
цессов, протекающих в солевых расплавах, в частности, при получении и рафини-
ровании металлического циркония и его отделения от гафния и других примесей.

Тетрахлорид циркония является высоко реакционноспособным и легколетучим 
веществом, поэтому его растворы в  расплавленных хлоридах щелочных металлов 
во многих случаях имеют давление насыщенных паров выше атмосферного даже при 
температурах ликвидуса [1–9]. Это осложняет исследование и технологическое при-
менение таких расплавов. Однако в системах MCl–ZrCl4 (где M – щелочной металл) 
имеются по две концентрационные области, лежащие вблизи эвтектик, в которых 
давление паров тетрахлорида остается ниже атмосферного. Это – высокотемпера-
турная область в диапазоне концентраций 0–30 мол. % ZrCl4, и низкотемпературная, 
в районе 55–75 мол. % ZrCl4. Низкотемпературная область более узкая и более богатая 
тетрахлоридом [1–8]. Подробнее это мы уже обсуждали в [10]. Эвтектики разделены 
между собой конгруэнтно плавящимися двойными соединениями вида M2ZrCl6. 
Пример диаграммы состояния одной из таких систем дан на рис. 1.

Использование в качестве растворителя для летучего ZrCl4 бинарных расплавлен-
ных смесей или эвтектик хлоридов щелочных металлов дает возможность понизить 
температуру проведения технологических процессов, иногда значительно (на сотни 
градусов), и уменьшить давление паров тетрахлорида над расплавами [1–8].

Ранее в  серии экспериментальных работ нами была измерена электропрово-
дность как низко- так и высокотемпературных растворов с ZrCl4 в расплавах хлори-
дов различных щелочных хлоридов LiCl, NaCl, KCl, CsCl и некоторых из их смесей, 
включая эвтектику LiCl–KCl  [10–14]. В  настоящей работе дается сопоставление 
полученных результатов.

Рис. 1. Фазовая диаграмма системы NaCl–ZrCl4 [7, 13].
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ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для измерения электропроводности использовали оригинальные кварцевые 
ячейки капиллярного типа специальной конструкции с платиновыми или вольфра-
мовыми электродами для исследования высоко- или низкотемпературных расплавов, 
соответственно. Для снижения отгонки паров легколетучего ZrCl4 из расплавленных 
смесей токоподводы измерительных ячеек уплотняли или фарфоровыми соломками, 
плотно прилегающими к кварцевым стенкам [10, 15], или с помощью спая кварц–
вольфрам  [11]. Сопротивление расплавленных или гетерогенных (расплав + кри-
сталлы) смесей фиксировали с помощью моста переменного тока Р-5058 на частоте 
10 кГц, а температуру – Pt/Pt-Rh термопарой. В опытах использовали соли, допол-
нительно очищенные перегонкой и/или зонной перекристаллизацией, из которых 
готовили смеси заданных составов. Подробнее описание конструкции кондуктоме-
трических ячеек, методик проведения измерений, а также подготовки солей приве-
дено в наших работах [10–15].

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Расплавы хлоридов щелочных металлов являются одними из  наиболее рас-
пространенных солей-растворителей с преобладающим кулоновским взаимодей-
ствием между частицами. Они содержат короткоживущие (со временем жизни 
~ 10–12 с) автокомплексные хлоридные анионы MCln

(n–1)– (с n ≈ 4–6) и  элемен-
тарные катионы M+ во второй координационной сфере [16–18]. Величины электро

Рис. 2. Политермы электропроводности расплавов чистых солей-растворителей (без добавок ZrCl4) 
[15, 19–23].
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проводности расплавов хлоридов различных щелочных металлов и  их смесей 
существенно отличаются друг от друга, возрастая в ряду от CsCl к LiCl (рис. 2). 
Это обусловлено различными подвижностями щелочных катионов, находящихся 
во вторых координационных сферах координационных сферах, вносящих основной 
вклад в перенос заряда [16]. Наибольшей электропроводностью обладают расплавы 
с наиболее мелкими (и подвижными) щелочными катионами (Li+).

Индивидуальный тетрахлорид циркония, напротив, образует молекулярный рас-
плав, состоящий из молекул ZrCl4 и Zr2Cl8 [24, 25]. Он существует только в довольно 
узком интервале температур (710–778 К), имеет высокое давление насыщенных паров 
(22–58 атм [2, 4]) и очень низкую электропроводность (~1∙10-4 См/см) [26, 27].

При взаимодействии с  хлоридами щелочных металлов тетрахлорид цирко-
ния выступает в  качестве мощного комплексообразователя, поскольку ионный 
потенциал Zr4+ (4/0.072  =  55.6 нм–1) значительно превышает ионные потен-
циалы всех щелочных катионов (например, Li+  – 1/0.059  =  16.9 нм–1; Cs+  – 
1/0.167  =  5.99  нм–1)  [28]. В  результате этого в  среде расплавленных хлоридов 
щелочных металлов легколетучий тетрахлорид циркония удерживается при повы-
шенных температурах в  составе прочных комплексных анионов ZrCl6

2– (в рас-
творах с его концентрациями до 33 мол. %), а также Zr2Cl10

2– · (ZrCl5
–) и Zr2Cl9

– – 
в растворах с еще большими содержаниями ZrCl4 [25, 29, 30], вытесняя щелочные 
катионы во вторые координационные сферы. Такие расплавленные смеси, содер-
жащие ионизированные комплексные группировки Zr(IV), имеют меньшее давле-
ние насыщенных паров, по сравнению с индивидуальным ZrCl4, и более высокую 
(на 3–4 порядка, рис. 3–6) электропроводность.

Высокотемпературные гладкие участки политерм на  этих рисунках соответ-
ствуют электропроводности гомогенных расплавленных смесей. Изломы или 
перегибы, наблюдаемые на политермах, после которых начинается более быстрое 
снижение электропроводности, соответствуют температурам начала выделения 
твердых фаз.

На рис. 3–5 показаны политермы электропроводности высокотемпературных 
растворов тетрахлорида циркония во всех исследованных нами расплавах хлори-
дов щелочных металлов и их смесей [10, 13, 14]. Здесь, в качестве примера, сопо-
ставляются между собой электропроводности растворов ZrCl4 с  приблизительно 
одинаковой его концентрацией (10, 20 и 25 мол. %) в разных солях-растворителях.

На рис.  6 приведены политермы электропроводности всех исследованных 
(нами  [11, 12] и  другими авторами  [31]) составов расплавленных смесей хлоридов 
циркония и щелочных металлов, находящихся в районе низкотемпературных эвтек-
тических впадин нескольких солевых систем. Отметим, что давление насыщенных 
паров ZrCl4 над расплавами последнего типа остается ниже атмосферного только 
в достаточно узких диапазонах варьирования их концентраций и температур [2–4, 7, 32], 
в которых мы и Ховэл с сотр. [31] и исследовали электропроводность.

По мере увеличения концентрации тетрахлорида циркония в расплавах увеличи-
вается и  концентрация его относительно малоподвижных комплексных анионных 
группировок, содержащих ионы хлора, сильно связанные с катионом четырехвалент-
ного металла. Это приводит к уменьшению концентрации основных носителей тока: 
щелочных катионов и подвижных ионов Cl–, которые постепенно замещаются гро-
моздкими комплексными группировками Zr(IV), вносящими малый вклад в  пере-
нос электричества. В результате электропроводность расплавленных смесей с ростом 
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Рис. 3. Политермы электропроводности расплавленных и  гетерогенных (кристалл + расплав) смесей 
тетрахлорида циркония с хлоридами щелочных металлов [10, 13, 14] с концентрациями ZrCl4: 10 мол. % – 
в LiCl, NaCl–KCl (1:1), KCl и CsCl; 10.5% – в NaCl; 11 % – в (LiCl–KCl)эвт.

Рис. 4. Политермы электропроводности расплавленных и  гетерогенных (кристалл + расплав) смесей 
тетрахлорида циркония с хлоридами щелочных металлов [10, 13, 14] с концентрациями ZrCl4: 20 мол. % – 
в LiCl, NaCl–KCl (1:1), KCl и CsCl; 20.5% – в NaCl; 21 % – в (LiCl–KCl)эвт..
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концентрации ZrCl4 снижается (рис. 3–7). На этих же рисунках видно, что удельная 
электропроводность расплавленных смесей при различных концентрациях тетрахло-
рида циркония возрастает в  ряду солей-растворителей от  CsCl к  LiCl, так же  как 
в ряду расплавов индивидуальных хлоридов щелочных металлов (рис. 2). Это может 
свидетельствовать о том, что во всех перечисленных случаях основной вклад в элек-
тропроводность вносят подвижные щелочные катионы разных размеров из  вторых 
координационных сфер. Отметим, что такой же тип изменения удельной электропро-
водности как при повышении концентрации тетрагалогенида циркония, так и  при 
замене соли-растворителя, наблюдали авторы работы [33] для растворов ZrF4 в рас-
плавах щелочных фторидов.

Электропроводность всех исследованных расплавленных смесей убывает 
не только при увеличении концентрации ZrCl4, но и при уменьшении температуры 
в результате снижения подвижности ионов (простых и комплексных) и повышения 
вязкости расплава (рис. 3–7). В результате этого электропроводность расплавленных 
смесей, показанных на рис. 6, оказывается ниже (в большинстве случаев значительно) 
всех остальных (рис. 3–5, 7).

Отметим, что при концентрациях ZrCl4 выше 33–50 мол.%, при которых проч-
ные комплексные анионы ZrCl6

2– начинают замещаться на  менее прочные типа 
Zr2Сl10

2– · (ZrCl5
–) и Zr2Cl9

– [25, 29, 30], а число свободных щелочных катионов суще-
ственно сокращается, все больший вклад в электропроводность расплавов, по-ви-
димому, вносят перескоковые перемещения анионов хлора между комплексами.

Изотермы удельной электропроводности растворов ZrCl4 в расплавах всех хло-
ридов щелочных металлов и их смесей имеют отклонения от прямолинейного хода 
в  зависимости от  концентрации в  сторону меньших значений  (рис. 7), что можно 

Рис. 5. Политермы электропроводности расплавленных и  гетерогенных (кристалл + расплав) смесей 
тетрахлорида циркония с хлоридами щелочных металлов [10, 13, 14] с концентрациями ZrCl4: 25 мол. % – 
в LiCl, NaCl–KCl (1:1) и KCl; 25.5% – в NaCl и (LiCl–KCl)эвт.; 30 % – в CsCl.
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связать с комплексообразованием в результате взаимодействия между компонентами 
в этих расплавах.

В отличие от  них изотермы электропроводности расплавов псевдобинарной 
системы KAlCl4 – ZrCl4, исследованной нами ранее в  диапазоне концентраций 0  – 
32.5  мол.  % ZrCl4  [15, 23], показывают положительные отклонения электропрово-
дности от  прямолинейного хода ее  изотерм  (рис.  8). Такое поведение свойственно 
солевым системам без сколько-нибудь заметного взаимодействия между компонента-
ми [34]. Расплавы данной системы представляют интерес для организации процессов 
ректификационного разделения тетрахлоридов гафния и циркония [2, 3, 35, 36].

Взаимодействие между компонентами KAlCl4 и ZrCl4 в их расплавленных сме-
сях, действительно, практически отсутствует [2, 35], так как по сравнению с хло-
ридом циркония хлорид алюминия является более сильным комплексообразовате-
лем (ионный потенциал Al3+ равен 3/0.039 = 76.9, а Zr4+ – 4/0.072 = 55.6 нм–1 [28]). 
Поэтому именно AlCl3 удерживает в  расплавах в  своих комплексных анионах 

Рис. 6. Политермы электропроводности низкотемпературных расплавленных и гетерогенных (кристалл + 
расплав) смесей тетрахлорида циркония с хлоридами щелочных металлов [11,12,31].
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(AlCl4
–, Al2Cl7

–  [37]) почти все хлор-ионы, отобранные у  хлорида калия. Фак-
тически же, в  исследованных нами расплавах KAlCl4  – ZrCl4 [15, 23] суммарная 
концентрация двух конкурирующих между собой комплексообразователей (AlCl3 
и ZrCl4) составляет 50–60 мол. % (остальное  – KCl), поэтому их  электропрово-
дность по своей величине оказывается ближе к высоко концентрированным низ-
котемпературным расплавам MCl – ZrCl4 (рис. 6), чем к менее концентрирован-
ным и более высокотемпературным (рис. 3–5, 7).

Еще большие положительные относительные отклонения изотерм удельной 
электропроводности расплавленных смесей от  аддитивных значений (210–340 %) 
было зафиксировано нами для расплавов системы ZnCl2 – ZrCl4 (рис. 9) [38]. Инте-
ресным является факт повышения электропроводности приблизительно в полто-
ра раза после добавлении к полимерному плохо проводящему расплаву дихлорида 
цинка еще менее проводящего тетрахлорида циркония у  расплавленных смесей, 
содержащих 30–60 мол. % ZrCl4. Тогда как у всех остальных расплавленных смесей, 
рассматриваемых в настоящей работе, добавка ZrCl4 вызывает снижение электро-
проводности (рис. 7, 8).

Прямое исследование структуры расплавленных смесей ZnCl2–AlCl3 методом 
комбинационного рассеяния света (КРС) показало, что спектры смесей представ-
ляют собой суперпозицию спектров исходных расплавов ZnCl2 и AlCl3 [39]. Можно 
предположить, что зафиксированное нами для расплавленных смесей ZnCl2–ZrCl4 
существенное повышение электропроводности, аналогичное наблюдавшемуся 
ранее для расплавов ZnCl2 – AlCl3 и ZnCl2 – FeCl3 [40], вызвано частичным разру-
шением полимерной структуры расплавленного ZnCl2 в результате взаимодействия 
солей при их смешении и появлением в плохо проводящей жидкой среде заряжен-

Рис. 7. Изотермы удельной электропроводности растворов ZrCl4 в расплавах хлоридов различных щелоч-
ных металлов при 700°C [10,13,14] (в расплаве LiCl при 580°C [10]).
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ных частиц (ZnCl2 + ZrCl4 ↔ ZnCl+
 + ZrCl5

– ↔ Zn2+ + ZrCl6
2– ↔ ...), однако в небольших 

количествах (менее 1 мол. %) – ниже пределов их обнаружения методом КРС-спек-
троскопии.

В целом же, из-за низкой проводимости расплава-растворителя (ZnCl2), элек-
тропроводность расплавленных смесей ZnCl2–ZrCl4 существенно ниже, чем у всех 
остальных: расплавов MCl – ZrCl4 (M – щелочной металл) и KAlCl4– ZrCl4 (рис. 2–8).

Рис. 8. Изотермы удельной электропроводности расплавленных смесей KAlCl4 – ZrCl4 [15, 23].

Рис. 9. Изотермы удельной электропроводности расплавленных смесей ZnCl2 – ZrCl4 [38].
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ЗАКЛЮЧЕНИЕ

Сделан обзор имеющихся данных (наших и литературных) по электропроводно-
сти ZrCl4-содержащих расплавов. Совокупность полученных экспериментальных 
данных  [10–14, 31] свидетельствует о  том, что электропроводность высокотемпе-
ратурных расплавов (0–30 мол. % ZrCl4 при PZrCl4 ⩽ 1 атм) LiCl–ZrCl4, NaCl–ZrCl4, 
NaCl−KCl (1:1)  – ZrCl4, KCl–ZrCl4 и  CsCl–ZrCl4 (0.6–3.1 См/см)  [10, 13] выше, 
а концентрационные интервалы их существования значительно шире, чем у иссле-
дованных ранее  [11, 12, 31] легкоплавких расплавленных смесей тетрахлорида 
циркония с хлоридами тех же щелочных металлов (0.1–0.5 См/см) с высоким содер-
жанием ZrCl4 (55–75 мол. %).

Использование расплавленной эвтектики LiCl–KCl в качестве низкоплавкого 
растворителя позволяет на  сотни градусов расширить диапазон существования 
расплавленных смесей MCl–ZrCl4 с 0–33 мол. % ZrCl4 в сторону более низких тем-
ператур (и давлений насыщенных паров легколетучего тетрахлорида над смесями) 
при сопоставимо высоких величинах электропроводности (0.9–2.8 См/см)  [14]. 
Это дает дополнительные преимущества для проведения технологических операций.
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ELECTRICAL CONDUCTIVITY OF SALT MELTS,  
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Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences, 

Yekaterinburg, Russia
*E-mail: salyulev@ihte.ru

The present paper presents an overview of the available experimental data (both our data 
and provided by other researchers) on the electrical conductivity of ZrCl4–containing salt 
melts, for which the saturated vapor pressure of ZrCl4 above them is P ⩽ 1 atm. These melts 
have a significant practical application potential. Such mixtures are divided into high-tem-
perature mixtures with a ZrCl4 concentration of 0-30 mol. %, and low-temperature ones, 
with a narrower ZrCl4 content range of 50-75 mol. %. Based on the obtained experimental 
data it was found that the electrical conductivity of all molten ZrCl4–containing mixtures 
increases as the temperature increases, zirconium tetrachloride concentration decreases, 
and the molten solvent salt is replaced in the row from CsCl to LiCl. The experimental 
data obtained are summarized and discussed taking into account the available informa-
tion on the structure of the molten mixtures. Electrical conductivity of high–temperature 
MCl-ZrCl4 melts (0-30 mol. % ZrCl4; M is an alkali metal), is in the range of 0.6–3.1 Cm/
cm, which is significantly higher than the electrical conductivity of low–melting molten 
mixtures of the same chlorides (0.1-0.5 Cm/cm) with a high content of ZrCl4 (55-75 mol. 
%). It has been found that the use of low-melting salt solvents, for example, LiCl–KCl 
eutectic, makes it  possible to  expand the range of  existence of  ZrCl4-containing melts 
by hundreds of degrees towards lower temperatures and saturated vapor pressures at suf-
ficiently high values of electrical conductivity (0.9–2.8 Cm/cm). This provides additional 
advantages for the organization of various technological processes.

Keywords: ZrCl4, electrical conductivity, molten salts, alkali metal chlorides
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