Карбиды тугоплавких металлов TiC, ZrC, HfC, NbC и TaC обладают превосходными физическими, химическими и механическими свойствами в качестве материалов для ультравысокотемпературной керамики. Из них наиболее тугоплавкими являются TaC и HfC, температуры плавления которых приближаются к 4000°C. Нельзя не отметить высокую твердость, прочность и износостойкость тугоплавких карбидов. Отсюда вытекает закономерный интерес к высокоэнтропийным карбидам на их основе, которые становятся важным классом новых керамических материалов, поскольку потенциально обладают более совершенными прикладными свойствами. Однако получение таких материалов классическими металлургическими методами является сложной задачей. В современных исследованиях чаще всего образцы высокоэнтропийных карбидов синтезируют, используя дорогостоящее специальное оборудование (методы плазменно-искрового спекания, высокоэнергетические планетарные мельницы и т.п.) и сравнительно длительную подготовку прекурсоров к производству образцов. В настоящей работе описывается новый подход к синтезу многокомпонентного карбида состава (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C с помощью электрохимического процесса при температуре, не превышающей 1173 K. Метод основан на явлении бестокового переноса металлов в расплавах солей. После проведения последовательного переноса металлов образец отмывался от электролита, затем спекался в вакуумной печи. По данным рентгенофазового анализа полученный высокоэнтропийный карбид представляет собой однофазный твердый раствор с ГЦК структурой. Дифрактограмма синтезированного образца имеет хорошее согласие с расчетной дифрактограммой, полученной по формуле Дебая для суперячейки из 64000 атомов. Компактный образец высокоэнтропийного карбида изготавливался прессованием в пресс-форме таблетки диаметром 10 мм с добавлением кобальта в качестве матричного металла. После вакуумного спекания образец подвергался шлифовке для подготовки к исследованию на сканирующем электронном микроскопе. Было выполнено элементное картирование поверхности образца, которое показало удовлетворительное распределение металлов, входящих в состав высокоэнтропийного карбида. Измеренная микротвердость образца оказалась меньше, чем встречающиеся значения в публикациях других авторов, что может быть связано с некоторой остаточной пористостью образца.
Высокоэнтропийные сплавы привлекают внимание исследователей благодаря наличию комплекса новых свойств. В работе рассмотрены факторы, влияющие на структуру высокоэнтропийных сплавов (ВЭС) на основе элементов Ti, Zr, Hf, V и Nb. Приведены данные о структуре четырехкомпонентного Ti25Zr25V25Nb25 и пятикомпонентного Ti20Zr20Hf20V20Nb20 сплавов, полученных при одинаковых режимах плавки и охлаждения в дуговой печи. Данные энергодисперсионного химического анализа показали, что химический состав сплавов соответствовал номинальному. На основании анализа микрофотографий поверхности слитков сделан вывод о том, что использованный режим плавки приводил к перегреву четырехкомпонентного сплава, а пятикомпонентного – нет. Экспериментально обнаружено, что первичное формирование четырехкомпонентного сплава происходит быстрее, чем пятикомпонентного, однако дальнейший переплав в условиях перегрева приводит к образованию многофазной структуры. Максимальное содержание ОЦК твердого раствора (98%) в сплаве Ti25Zr25V25Nb25 было достигнуто при первом переплаве, а другой фазой (2%) был ГЦК твердый раствор. Максимальное содержание ОЦК твердого раствора (95%) в сплаве Ti20Zr20Hf20V20Nb20 было получено при повторном переплаве, а ОЦК, ГПУ твердые растворы и фаза Лавеса присутствовали в количестве не более 3%. Параметры кристаллической решетки основных фаз с ОЦК структурой для сплавов Ti25Zr25V25Nb25 и Ti20Zr20Hf20V20Nb20 имели соответственно следующие значения – 3.270 и 3.362 Å. Установлено, что наряду с соблюдением термодинамических условий при получении тугоплавких ВЭСов с однофазной структурой важен выбор термовременных условий плавки и кристаллизации для каждого конкретного состава сплава.
Электрохимическое поведение неупорядоченных систем, таких как высокоэнтропийные сплавы, представляет собой стохастический случайный процесс. Для точного прогнозирования и анализа поведения таких систем в эксплуатационных условиях, наряду с классическими электрохимическими методами, необходимо применение новых вычислительных и экспериментальных методов. В данной работе на примере редкоземельных сплавов эквимолярного состава GdTbDyHoSc и GdTbDyHoY показана эффективность использования быстрого преобразования Фурье и вейвлет-анализа для оценки электрохимического поведения стохастических систем. Были измерены временны́е ряды колебания величин потенциала исследуемых образцов в 0.01 М растворе NaCl в течение 12 ч при плотностях тока от 0.2 до 0.5 мА/см2. Анализ полученных временны́х рядов методом быстрого преобразования Фурье показал, что угловой коэффициент наклона логарифма спектральной плотности мощности к логарифму частоты увеличивается с ростом плотности тока. В частности, для образца GdTbDyHoY коэффициент β изменяется от –1.93 до –1.77. Для образца GdTbDyHoSc β находится в диапазоне от –1.46 до –1.35. Кроме того, использовался вейвлет-анализ для обработки временны́х рядов, полученных для обоих сплавов при плотностях тока от 0.2 до 0.5 мА/см2. Для иллюстрации интенсивности процесса электрохимического растворения поверхности исследуемых сплавов были построены скалограммы полученных временны́х рядов. На основе скалограмм были рассчитаны значения глобальных спектров энергии, распределенных по частотным диапазонам, а также значения общей энергии исследуемых систем. Сплав GdTbDyHoY продемонстрировал более высокие значения общей энергии по сравнению со сплавом GdTbDyHoSc. Значение общей энергии для сплава GdTbDyHoY при увеличении плотности тока с 0.2 до 0.5 мА/см2 увеличивается от 0.97 до 2.03 кВ2 соответственно. Для сплава GdTbDyHoSc значение общей энергии увеличивается с 0.50 до 0.84 кВ2. Установлено, что методы быстрого преобразования Фурье и вейвлет-анализа являются эффективными инструментами для понимании электрохимического поведения локально неупорядоченных химических систем, таких как высокоэнтропийные сплавы, состава GdTbDyHoSc и GdTbDyHoY, в дополнение к классическим электрохимическим методам.
Статья посвящена знаменательной дате – 70-летию образования Института металлургии имени академика Н.А. Ватолина УрО РАН как самостоятельного научного учреждения. Представлен краткий исторический очерк об основных этапах становления и развития Института, его научных направлений и школ. Освещен вклад ученых в развитие фундаментальных и прикладных исследований в области физико-химических основ высокотемпературных процессов в области черной и цветной металлургии, комплексной переработки минерального и техногенного сырья. Подведены итоги деятельности и достижения Института, ставшие результатом его плодотворной работы на протяжении нескольких десятилетий на благо отечественной металлургии.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation