Сплавы на основе титана и алюминия с добавками ниобия и редкоземельных металлов (РЗМ) обладают уникальными механическими и жаропрочными свойствами, также вероятна повышенная коррозионная стойкость таких сплавов. Методом термодинамического моделирования с использованием программы HSC изучена система с расходом алюминия, варьирующимся в интервале от 0 до 100% к массе исходной шихты. Исследованы особенности фазообразования в системах Al–[50TiO2–5Nb2O5–1Y2O3 (Gd2O3)]. Расчет теплового баланса процесса при 1600°C и расходе 44% Al составил – 0.196 МДж на 1 кг шихты, что указывает на возможность его протекания только за счет реализации алюминотермических реакций. Восстановление титана и ниобия может протекать по реакциям через образование их оксидов низшей валентности – TiO, NbO2, NbO. Алюминотермическое восстановление гадолиния термодинамически возможно только при температурах менее 1200°C. Восстановление иттрия через взаимодействие Y2O3 с алюминием c образованием соединений AlY, Al2Y3 AlY2 для интервала 1000–1800°C термодинамически невозможно. Результаты термодинамического моделирования взаимодействий хорошо коррелировали с данными дифференциально-термического и рентгенофазового анализов при использовании синхронного термического анализа, выполненного с помощью прибора STA 449 F3 Jupiter (NETZSCH) и дифрактометра XRD-7000 (Shimadzu) с автоматическим программным управлением, соответственно. Найдено, что процесс вступает в активную фазу после появления жидкого алюминия и, видимо, сопровождается экзотермическими эффектами с образованием двойных и тройных интерметаллических соединений алюминия с редкими (Nb, Ti) и редкоземельными (Gd, Y) металлами. Трансформация диоксида титана и пентаоксида ниобия в процессе превращений, вероятно, осуществляется через последовательные и параллельные стадии образования простых и сложных оксидов с низкими степенями окисления. На начальных этапах взаимодействия алюминия с оксидами, в основном, образуются алюминиды ниобия и титана. На последующих стадиях наблюдается формирование более сложных соединений. При температурах выше 1300°C образуются тройные интерметаллические соединения Al43Nb4Gd6, Ti4Al20Gd и Ti4Al3Y6, Al3Ti, Al0.23Nb0.07Ti0.7. Гадолиний и иттрий в таких системах склонны к образованию сложных интерметаллидов.
Эффективная вязкость (вязкоупругость) цезиевоборатных расплавов измерена в интервале температур 900–1600 K и концентраций 0 ≤ x ≤ 16 мол. % Cs2O вибрационной вискозиметрией. Показано, что вибрация приводит к неньютоновскому характеру движения расплавов. Это означает, что с энергией активации вязкого течения связаны не только конфигурационная энергия активации, энергия переключения мостиковых кислородных связей, но и энергия упругости структурных единиц расплава. Используя параметры в условиях ньютоновского и неньютоновского течения расплавов, были вычислены сдвиговая вязкость η', модуль упругости G ' и запасенная вязкость η''. Было показано, что цезийборатные расплавы в условиях высоких скоростей сдвига можно рассматривать как жидкости, обладающие вязкостными и упругими свойствами. Методом ДСК измерена температура стеклования (Tg, K), построена и объяснена ее зависимость от содержания оксида цезия.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation