В данной работе представлен обзор данных по растворимости оксидов редкоземельных элементов в галогенидных расплавах щелочных и щелочноземельных металлов. Наибольшая растворимость оксидов редкоземельных элементов наблюдается во фторидных расплавах, наименьшая – в хлоридных. Работ, посвященных изучению растворимости оксидов редкоземельных элементов в смешанных хлоридно-фторидных расплавах, крайне мало. Растворимость оксидов редкоземельных элементов уменьшается в ряду La-Ce-Pr-Nd-Gd. Наибольшее количество работ посвящено изучению растворимости оксидов неодима, лантана и церия. Практически отсутствуют данные по растворимости «тяжелых» оксидов редкоземельных элементов (от Tb до Lu) в галогенидных расплавах.
В данной работе выполнена модернизация известной ячейки для измерения температуропроводности расплавов фторидных солей методом лазерной вспышки. Расплавы галогенидов щелочных металлов, в том числе эвтектическая смесь FLiNaK (46.5 мол. % LiF – 11.5 мол. % NaF – 42 мол. % KF), рассматриваются как перспективные материалы для использования в ядерной энергетике, в частности в жидкосолевых реакторах (ЖСР), где они выступают в роли теплоносителей и среды для деления актинидов. Это делает исследование их теплофизических свойств крайне важным для проектирования активных зон реакторов и систем теплопередачи. Однако, как показывают данные из литературы, измерения температуропроводности расплава FLiNaK сопровождаются значительными расхождениями, связанными с влиянием неучтенных факторов теплопереноса и погрешностями экспериментальных методик. Метод лазерной вспышки, благодаря возможности учитывать конвективный и радиационный теплопереносы, является одним из наиболее предпочтительных для исследования температуропроводности расплавов солей при высоких температурах. Однако данный метод с использованием известной ячейки приводит к завышенным значениям температуропроводности вследствие рассеянного теплового потока. С целью модернизации данной ячейки в расчетной среде COMSOL Multiphysics была построена численная модель, позволившая изучить влияние материалов (Ni, BN, Au) и геометрии ячейки на процессы теплопереноса. Анализ данных позволил получить оптимизированную конструкцию ячейки, что минимизировало долю рассеянного теплового потока, сократило время достижения температурного пика, исключило необходимость калибровочных измерений и расширило температурный диапазон измерений. Экспериментальная проверка модернизированной ячейки проводилась с использованием оборудования Netzsch LFA 467 HT HyperFlash. Полученные данные подтвердили возможность более точного измерения температуропроводности FLiNaK в диапазоне температур 550–800°С. В частности, использование модернизированной ячейки улучшает воспроизводимость результатов и снижает разброс данных, уменьшая погрешность измерения с 33,8 до 2,6%. Это значительно расширяет перспективы дальнейших исследований высокотемпературных расплавов, что способствует разработке технологий ЖСР нового поколения.
Одним из применений фосфатных стекол является их использование в качестве матриц для иммобилизации радиоактивных отходов. Для выбора наиболее подходящих для данной цели составов необходим метод, позволяющий изучать как структуру стекла, так и физико-химические свойства. В настоящей работе методом классической молекулярной динамики рассчитан ряд физико-химических свойств стекла NaO - AlO - PO с массовой долей компонентов 0.25 - 0.25 - 0.5, соответственно, перспективного в качестве основы для иммобилизационных матриц. Модельная система была плавно охлаждена от расплава при Т = 2300 К до комнатной температуры. В процессе охлаждения получены температурные зависимости плотности и теплоемкости. Теплоемкость стекла при комнатной температуре по данным расчета составляет 1.17 Дж/(г*К). Рассчитанные зависимости среднеквадратических смещений ионов от времени, а также функции радиального распределения показывают, что ансамбль при комнатной температуре представляет собой стекло. Проведен детальный анализ локальной структуры, включая статистику локальных окружений [MeO]. Показано, что стекло содержит тетраэдры [PO], которые комбинированы с [AlO] и [AlO], а также разнообразными натриевыми группировками. Максимумы функций радиального распределения P-O, Al-O и Na-O лежат при 1.50, 2.02 и 2.45 Å, соответственно, что хорошо согласуются с данными других авторов о структуре близких по составу стекол. Кроме того, рассчитанная для комнатной температуры плотность 2.526 г/см попадает в интервал типичных плотностей фосфатных стекол и соответствует экспериментально измеренной. Рассчитаны плотности колебательных состояний ионов в стекле. Характерные частоты колебаний алюминия и фосфора в области 450 см и 1300 см, соответственно, согласуются с экспериментальными спектрами комбинационного рассеяния света в полуколичественном отношении. Для расчета коэффициента теплопроводности использовали неравновесную молекулярную динамику, моделируя поток тепла в ячейке и регистрируя установившийся температурный градиент. Рассчитанные коэффициенты теплопроводности и температуропроводности равны 1.35 Вт/(м*К) и 4.57*10 м/с, соответственно.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации