Были проведены эксперименты по определению скорости коррозии нержавеющей стали AISI 316 во фторидных расплавах с различной концентрацией O2– (путем добавления в расплав оксида лития в диапазоне концентраций от 0 до 5 мас. %). В результате серии экспериментов установлено, что происходит снижение скорости коррозии на порядок при концентрации анионов кислорода в расплаве от 0.2 до 0.4 мас. %, что может свидетельствовать об обнаружении явления высокотемпературной пассивации материала за счет модифицирования состава фторидного расплава и снижения его коррозионной активности. Кроме того, типичный для нержавеющих сталей тип межкристаллитной и питтинговой коррозии во фторидных расплавах, наиболее опасной с точки зрения конструкционного реакторного материала, при добавлении оксида лития изменяется на сплошной за счет “залечивания” отдельных коррозионных очагов избыточными кислородсодержащими соединениями. Установлено образование защитного слоя шпинельного типа толщиной 1 мкм.
При переработке отработавшего ядерного топлива (ОЯТ) предполагается использовать расплав LiCl–KCl (0.49 : 0.51) в инертной атмосфере. Все металлические материалы в данном солевом расплаве крайне подвержены коррозии, к тому же в процессе переработки ОЯТ как жидкая фаза (расплав), так и газовая, насыщаются продуктами распада, которые могут выступать в качестве дополнительных окислителей, усиливая агрессивность среды. В пирохимическую технологию ОЯТ включены операции, такие как мягкое хлорирование, электрорафинирование и металлизация, подразумевающие наличие в расплаве соединений хлоридов редкоземельных металлов (РЗМ) лантана, церия и неодима, а также хлоридов урана(III, IV). В данной работе было исследовано коррозионное поведение стали 12Х18Н10Т в расплаве LiCl–KCl, содержащем добавки NdCl3, CeCl3, LaCl3, UCl3 и UCl4 до 2 мас. %. Коррозионные испытания длительностью 100 ч были выполнены при температуре 500°С в инертной атмосфере аргона. Было установлено, что наличие хлоридов РЗМ значительно снижает деградацию исследуемой стали. Добавление (РЗМ)Cl3 проводит к формированию на поверхности образцов соединения (РЗМ)OCl, толщина и сплошность которых увеличивается в следующем ряду: LaCl3 < NdCl3 < CeCl3. Формирование подобного соединения приводит к торможению коррозионного процесса стали 12Х18Н10Т за счет солевой пассивации поверхности. Добавление в расплав UF4 вызывает значительную коррозию стали 12Х18Н10Т межкристаллитного типа. Введение в расплав UF3 приводит к снижению скорости коррозии, что связано с преимущественным взаимодействием трехвалентного хлорида урана с содержащимся в расплаве растворенным молекулярным кислородом, и формированию на поверхности образцов нестехиометрического соединения с кристаллохимической формулой U3O7 по данным микрорентгеноспектрального анализа.
Для реакторной установки БРЕСТ-ОД-300 [1, 2] разрабатывается технология регенерации смешанного нитридного уран-плутониевого отработавшего ядерного топлива (СНУП ОЯТ) [3–9]. Для отделения СНУП ОЯТ от оболочек ТВЭЛов, изготовленных из материала с высокой радиационной стойкостью – ферритно-мартенситной стали ЭП-823 [10–16], предлагается использование пирометаллургических способов “мягкого хлорирования” [17]. При растворении легирующих и примесных элементов стали ЭП-823 в расплавленных солях эвтектиктического состава на основе хлоридов лития и калия будет происходить загрязнение расплава. По этой же причине будет происходить образование летучих соединений с их дальнейшим массопереносом из горячих в холодные участки технологического оборудования. При исследовании коррозионного поведения металлов и сплавов в жидких средах часто возникает задача определения в растворе малых количеств продуктов растворения. Данная задача возникает, например, при исследовании скорости растворения микропримесей. Чувствительность обычных, традиционных методов, используемых при таких коррозионных испытаниях, как определение потерь массы или колориметрическое определение продуктов коррозии в растворе, часто недостаточна для проведения соответствующих измерений. В данных случаях наиболее эффективным оказывается применение радиохимического метода нейтронно-активационного анализа, основанного на качественном и количественном определении химических элементов. Данный метод основан на измерении характеристик излучения радионуклидов, образующихся при облучении материалов нейтронами. В настоящей работе представлены результаты исследования коррозионного поведения и массопереноса продуктов коррозии, предварительно облученной стали ЭП-823 в расплавах солей 2KCl–3LiCl и 2KCl–3LiCl–PbCl2 при температурах 500 и 650°C в течение 24 ч. Показано, что метод нейтронно-активационного анализа может быть применен для исследования коррозионного поведения стали в расплавах солей различного состава.
Эксплуатационные характеристики высокоэнтропийных сплавов, в частности их коррозионные свойства, являются предметом активного изучения многих научных групп. Интерес к высокоэнтропийным сплавам обусловлен их относительной простотой получения (чаще всего – электродуговой плавкой с невысокими скоростями охлаждения), коррозионной стойкостью и высокими значениями механических свойств (твердости, прочности). Особое место среди высокоэнтропийных сплавов занимают составы, полученные на основе алюминия и переходных металлов (никеля, железа, кобальта) благодаря их эксплуатационным характеристикам, соизмеримым с некоторыми объемно-аморфными составами. Для более широкого промышленного применения таких сплавов требуется информация об особенностях коррозионных процессов в них. В нашей работе исследовано коррозионное поведение сплава Al₂₀Ni₂₀Co₂₀Cu₂₀Zr₂₀ в водном растворе 5 мас. % NaCl в результате выдержки в течение 1 500 ч при температуре 25°С. Установлено, что сплав подвержен минимальной коррозии, обусловленной растворением никеля и кобальта, со скоростью коррозии 2.98 ± 0.1 мг/м2ч. Посредством электрохимических измерений установлено, что значение потенциала коррозии составляет –0.19 В относительно хлорсеребряного электрода сравнения, а поляризация в анодную область приводит к селективному растворению никеля и кобальта.
Расплавленные хлориды щелочных металлов, используемые в пиротехнологиях, являются агрессивными коррозионными агентами. Высокая рабочая температура процесса, неоднородность среды, значительная коррозионная активность солевого расплава обуславливают необходимость как поиска устойчивых конструкционных материалов, так и разработки способов защиты конструкционных элементов высокотемпературных технологических устройств. Методы снижения коррозионных потерь, традиционно используемые в низкотемпературных средах, неприменимы при высоких температурах. В статье рассмотрено влияние кислородосодержащих примесей (оксида и гидроксида лития) на коррозионное поведение металлического никеля (марка НП1) – основного компонента кандидатных конструкционных сплавов, термодинамически и структурно устойчивого материала в расплаве для осуществления процесса электролитического рафинирования ОЯТ. Описана методика подготовки солевого электролита LiCl–KCl и получения оксида лития путем термического разложения безводного гидроксида лития под вакуумом, определены концентрации примесей в электролите и синтезированном оксиде лития. Представлена установка для проведения коррозионных испытаний в условиях инертной атмосферы перчаточного бокса. Для оценки коррозионной стойкости материала были использованы: гравиметрический анализ, МРСА поверхности и шлифов поперечного сечения и РФА поверхности образцов. Получены зависимости скорости коррозии материала от концентрации кислородосодержащих добавок Li2O и LiOH. По совокупности данных гравиметрического, микрорентегоспектрального и рентгенофазового анализов установлено, что образцы металлического никеля демонстрируют высокую коррозионную стойкость в исследуемых расплавах с введением добавок Li2O и LiOH.
Расплавленные хлоридные солевые электролиты обладают рядом свойств, которые делают их перспективными для использования в качестве рабочей среды для реализации высокотемпературных технологий. Хлориды щелочных металлов являются агрессивной средой по отношению к конструкционным материалам. Одним из возможных методов снижения коррозионных потерь конструкционного материала является метод кислородной пассивации поверхности металла или сплава путем введения в расплав определенного количества кислородосодержащих добавок. В статье рассмотрено влияние кислородсодержащих примесей (оксида лития и гидроксида лития) на коррозионное поведение металлического материала — сплава состава железо – кобальт – никель. Для оценки коррозионной стойкости материалов были использованы: гравиметрический анализ, микрорентгеноспектральный анализ (МРСА) поверхности и шлифов поперечного сечения и рентгенофазовый анализ (РФА) поверхности образцов. Представлены зависимости скорости коррозии материала от концентрации кислородосодержащих добавок Li2O и LiOH. По совокупности данных гравиметрического анализа, МРСА и РФА установлено, что образцы сплава 29НК в солевом расплаве LiCl–KCl–nLi2O мало подвержены коррозии, но в расплаве LiCl–KCl–nLiOH скорость сплава 29НК значительно возрастает за счет взаимодействия добавки LiOH с наиболее электроотрицательным компонентом сплава — железом.
Изучено коррозионное поведение стали ЭП-823 при высокотемпературной обработке (ВТО) азотом. Установлено, что в азоте при температурах 650–800°С сталь подвергается лишь незначительной поверхностной коррозии. Показано, что происходит незначительное изменение поверхностного состава и структуры стали, не оказывающее существенного влияния на процессы переработки модельного отработавшего ядерного топлива (ОЯТ). Показано, что на поверхности материала протекают процессы взаимодействия некоторых электроотрицательных компонентов ферритно-мартенситной стали с компонентами газовой фазы – азотом и примесным кислородом с образованием включений нитридных и оксидных соединений хрома и марганца различного стехиометрического состава. Процесс лимитируется диффузией этих компонентов из объема сплава на поверхность. Скорости коррозии стали ЭП-823 при температурах 650 и 800°С составили при 12 –часовой выдержке 0.104 и 0.241 мм/год, а при 84-часовой выдержке 0.013 и 0.02 мм/год соответственно. Характер разрушения поверхности образцов сплошной неравномерный, отчетливо наблюдается локализация коррозии на границах зерен стали, что связано с образованием вторичных фаз вдоль границ зерен. В процессе ВТО происходит значительная сенсибилизация стали, по границам зерен наблюдается цепочечное выделение вторичных фаз, что приводит к развитию межкристаллитной коррозии. Сделаны выводы об изменении структуры материала в ходе высокотемпературного воздействия и определен характер коррозионного поражения материала; на основании результатов рентгенофлуоресцентного анализа сделаны выводы о составе продуктов коррозии стали ЭП-823.
Одной из базовых технологических операций разрабатываемой в настоящий момент пирохимической технологии переработки отработавшего нитридного ядерного топлива реакторов на быстрых нейтронах (ОЯТ РБН) является высокотемпературная обработка (ВТО) в газовой среде. Целью работы являлось исследование влияния кислородосодержащих газовых сред: сухая смесь Ar-20 об. % O и смесь Ar-20 об. % O, с влажностью 60 % на деградацию сплава 10ХН45Ю, кандидатного материала для изготовления аппарата ВТО. Коррозионные испытания продолжительностью до 1000 часов проводились при 500C. Введение в состав газовой фазы водных паров (влажность 60 %) незначительно повышает деградацию исследуемого материала (при времени испытаний 100 часов: с 0,021 до 0,030 г/(мч), при времени испытаний 500 часов: с 0,008 до 0,010 г/(мч)). Отмечается значительное снижение показателей скорости коррозии с увеличением времени испытаний, что связано с формированием сплошного слоя продуктов коррозии, препятствующего дальнейшему окислению компонентов сплава. Установлено методом РФА, что основными продуктами коррозии, образуемыми на поверхности образцов, выдержанных в сухой газовой атмосфере, являются AlO, FeO и NiFeO. Присутствие влаги в газовой среде способствует формированию NiO и NiСrO. В сухой газовой смеси на поверхности образца наблюдается внешний слой, представляющий собой отдельные фрагменты коррозионных продуктов: оксидных соединений железа, хрома, никеля. Поверхность материала покрыта сплошной пленкой на основе оксида алюминия толщиной от 2 до 5 мкм. Для образцов, испытанных во влажной газовой смеси, выявлено нарушение сплошности внутреннего защитного слоя. Внешний разрыхленный слой состоит из оксидов железа, под которым выявлен слой с преимущественным содержанием кислородсодержащих соединений хрома.
В настоящий момент активно разрабатывается высокотемпературная технология переработки отработавшего ядерного топлива с применением расплавленных солей. Одной из ключевых стадий данной технологии является электрорафинирование с использованием в качестве электролита солевой композиции на основе LiCl-KCl. Высокие рабочие температуры и изменение состава солевых электролитов в результате протекающих технологических процессов обуславливают повышенную агрессивность расплава по отношению к конструкционным материалам. В работе исследовалось влияние изменения окислительно-восстановительного потенциала среды, задаваемого посредством введения в состав солевого электролита хлоридов урана (доля трехвалентного хлоридов урана в добавке 2 мас. % UCl/UCl от 5 до 95%) на коррозионные характеристики нержавеющей стали 12Х18Н10Т в расплаве хлоридов лития и калия. Коррозионные испытания длительностью 100 часов были выполнены при температуре 550 С в условиях инертной газовой среды аргона с содержанием воды менее 0.1 ppm и кислорода менее 10 ppm. Окислительно-восстановительный потенциал среды определялся как относительно хлорного, так и относительно литиевого динамического электрода сравнения (Li/Li). При преимущественном введении в расплав UCl наблюдается снижение скорости коррозии (до 0.005 г/(м·ч)), при введении четырехвалентной формы хлорида урана - значительное повышение скорости коррозии стали 12Х18Н10Т (до 0.703 г/(м·ч)) относительно скоростей коррозии, полученных в результате коррозионных испытаний в эвтектическом расплаве LiCl-KCl без добавок (0.062 г/(м·ч)). При экспериментально измеренном значении ОВП расплава (LiCl-KCl)-UCl/UCl (относительно литиевого динамического электрода сравнения) от 1.78 до 2.08 В скорости коррозии стали 12Х18Н10Т ниже, чем значение скорости коррозии данной стали в эвтектическом расплаве хлоридов лития и калия.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации