В данной работе выполнена модернизация известной ячейки для измерения температуропроводности расплавов фторидных солей методом лазерной вспышки. Расплавы галогенидов щелочных металлов, в том числе эвтектическая смесь FLiNaK (46.5 мол. % LiF – 11.5 мол. % NaF – 42 мол. % KF), рассматриваются как перспективные материалы для использования в ядерной энергетике, в частности в жидкосолевых реакторах (ЖСР), где они выступают в роли теплоносителей и среды для деления актинидов. Это делает исследование их теплофизических свойств крайне важным для проектирования активных зон реакторов и систем теплопередачи. Однако, как показывают данные из литературы, измерения температуропроводности расплава FLiNaK сопровождаются значительными расхождениями, связанными с влиянием неучтенных факторов теплопереноса и погрешностями экспериментальных методик. Метод лазерной вспышки, благодаря возможности учитывать конвективный и радиационный теплопереносы, является одним из наиболее предпочтительных для исследования температуропроводности расплавов солей при высоких температурах. Однако данный метод с использованием известной ячейки приводит к завышенным значениям температуропроводности вследствие рассеянного теплового потока. С целью модернизации данной ячейки в расчетной среде COMSOL Multiphysics была построена численная модель, позволившая изучить влияние материалов (Ni, BN, Au) и геометрии ячейки на процессы теплопереноса. Анализ данных позволил получить оптимизированную конструкцию ячейки, что минимизировало долю рассеянного теплового потока, сократило время достижения температурного пика, исключило необходимость калибровочных измерений и расширило температурный диапазон измерений. Экспериментальная проверка модернизированной ячейки проводилась с использованием оборудования Netzsch LFA 467 HT HyperFlash. Полученные данные подтвердили возможность более точного измерения температуропроводности FLiNaK в диапазоне температур 550–800°С. В частности, использование модернизированной ячейки улучшает воспроизводимость результатов и снижает разброс данных, уменьшая погрешность измерения с 33,8 до 2,6%. Это значительно расширяет перспективы дальнейших исследований высокотемпературных расплавов, что способствует разработке технологий ЖСР нового поколения.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации