В данной работе рассмотрены основные способы хлорирования природных соединений циркония, оценена эффективность существующих технологий и рассмотрены наиболее перспективные методы развития отрасли. В настоящее время во всем мире активно проводятся исследования и разработки новых, энергоэффективных способов переработки цирконий‒содержащих как природных соединений, так и техногенных отходов. Действующие гидрометаллургические способы переработки цирконий‒содержащих материалов обладают рядом существенных недостатков, таких как многостадийность, низкая степень и интенсивность извлечения циркония, высокий расход реагентов, или необходимость длительного захоронения в случае переработки отходов ядерной энергетики. Наиболее перспективными с технико‒экономической точки зрения представляются пирохимические способы переработки циркония в расплавленных солях благодаря большей интенсивности процесса и возможности утилизировать более широкий спектр соединений. Хлорные методы металлургии являются основой производства большинства редкоземельных элементов, а для таких элементов, как титан, цирконий, и гафний, не имеют приемлемых альтернатив и являются единственным способом получения высокочистого металла. Чаще всего хлорирование осуществляют в расплавах на основе хлоридов щелочных и щелочноземельных металлов, в пределах 1000 °С. Хлорирование оксидов чистым хлором без использования восстановителя невозможно, вплоть до температуры 827 °С и выше, из‒за положительных значений энергии Гиббса реакции, поэтому для осуществления процесса используют восстановители, в частности различные формы углерода, однако данный метод затрудняет соблюдение стехиометрии загружаемых реагентов, что приводит к накоплению углерода в зоне реакции. Основными препятствиями к развитию идеи использования четыреххлористого углерода стали высокая стоимость, токсичность и ограниченная растворимость в солевых расплавах, что делает его более пригодным для непосредственного хлорирования оксидов в парах CCl4. Более перспективным, с точки зрения энергозатрат, технологичности и общей эффективности процесса представляется хлорирование с использованием в качестве восстановителя элементарной серы. Для повышения эффективности хлорирования возможно использование комбинированного метода с применением системы хлор‒углерод‒сера. Предлагаемый метод позволяет снизить температуру процесса и синтезировать необходимые соединения непосредственно в реакторе, что позволит снизить число технологических операций и повысить рентабельность процесса.
В настоящее время существенно возрастает спрос на сплавы и материалы на основе циркония, в связи с их высокой термической и коррозионной стойкостью в сочетании с механической прочностью. Существующие технологии получения циркония и его сплавов осложнены высокой температурой процесса, либо трудоемкостью и многостадийностью, что существенно повышает себестоимость целевого материала вплоть до потери рентабельности процесса. Более рентабельным представляется электрохимический синтез циркония и его сплавов в расплавах на основе фторидов, с использованием оксидов циркония в качестве основного металлсодержащего расходного компонента. В данной работе была проведена серия электролизных испытаний с целью осаждения сплава Al-Zr при потенциале 1.6 В, на графитовом и молибденовых катодах. Согласно ранее полученным результатам, при наличии ZrO2 в расплаве KF-AlF3-Al2O3 на катодной ветви вольтамперограмм появляются площадка и пик разряда электроактивных ионов при потенциалах –1.4 и –1.7 В, ZrI и ZrII, соответственно. Аналогичные отклики проявляются на вольфраме при потенциалах –1.3 и –1.6 В, соответственно, а в области потенциалов –1.9 В имеется четкий пик (Al) электровосстановления ионов алюминия. В результате потенциостатического электролиза было установлено, что графитовый анод расходовался, а на катоде сформировался достаточно хорошо сцепленный осадок. Часть катодного осадка была механически отделена от катода для анализа его химического и фазового состава. На основании результатов рентгенофазового анализа было установлено, что катодный осадок, состоит преимущественно из соединений Al3Zr и алюминия с примесями молибдена, состава Al12Mo, что согласуется с известными представлениями об образовании интерметаллидных соединений при взаимодействии алюминия с другими металлами. В аналогичных условиях был проведен электролиз расплава на графитовом катоде. На основании микрофотографии поперечного среза катода, было установлено, что в процессе электролиза на границе раздела фаз электрод-электролит, сформировался слой осадка, содержащего одновременно цирконий и алюминий.
В настоящее время, существенно возрастает спрос на алюминиевые сплавы, в том числе с добавками циркония. Одним из способов производства таких сплавов является восстановление фторцирконатов щелочных и щелочноземельных металлов в расплавленных солях, данный метод характеризуется высокой степенью извлечения и интенсивностью процесса. Согласно данным научно-технической литературы, повышению эффективности подобных процессов может способствовать применение электролиза, в связи с чем актуальным является изучение электрохимического поведения фторцирконатов в расплавленных средах. Методом циклической хроновольтамперометрии изучены некоторые закономерности электровосстановления циркония и алюминия из легкоплавкого расплава KF–AlF3–Al2O3–ZrO2 при температуре 750°С, в зависимости от состава добавки и материала подложки. Были получены серии поляризационных кривых, как в чистом расплаве, так и с добавками фторцирконата калия, при скоростях развертки потенциала от 0.01 до 2 В. Показано, что катодные токи электровыделения алюминия появляются при потенциалах –1.6...–1.7 В, относительно потенциала CO/CO2 электрода, дальнейшее смещение потенциала в катодную область приводит к совместному выделению алюминия и калия. При введении K2ZrF6 в расплав KF-AlF3-Al2O3 на катодной ветви вольтамперограмм, появляются площадка разряда ионов циркония при потенциалах –1.4 и –1.6 В. При сравнении вольтамперограмм, полученных с добавками оксида циркония и фторцирконата калия при прочих равных условиях, было установлено, что при добавке оксида на катодной ветви вольтамперограмм наблюдается два перегиба при потенциалах –1.4 и –1.7 В, в то время как при восстановлении фторцирконата наблюдается лишь один перегиб при потенциале –1.3 В. Наличие двух откликов при введении оксида может быть вызвано как электровыделением элементарного циркония в две электрохимические стадии, так и разрядом цирконий-содержащих ионов разного состава. Анализ дифрактограмм расплавов показывает, что независимо от состава добавки, в расплаве могут присутствовать как фторцирконат калия, так и оксид циркония. Исходя из полученных данных, можно сделать вывод, что цирконий может либо разряжаться в несколько стадий, либо образовывать ряд промежуточных соединений при взаимодействии с компонентами расплава.
Алюминиевые сплавы с добавками циркония находят все большее применение в аэрокосмической отрасли, приборостроении и энергетике, благодаря сочетанию повышенной коррозионной и термической стойкости без ущерба для плотности и электропроводности. Перспективным способом получения таких сплавов является синтез в расплавленных фторидах щелочных и щелочно земельных металлов, с использованием оксидов в качестве расходного металл-содержащего компонента. Согласно существующим научно-техническим данным, повышению эффективности восстановления оксида циркония до металлического может способствовать применение электролиза, в связи с чем, актуальным является изучение электрохимического поведения ионов циркония во фторидных расплавах. Методом циклической хроновольтамперометрии изучены основные закономерности катодного электровосстановления ионов циркония и алюминия из расплавов на основе KF–AlF3 с добавками оксидов циркония и алюминия при температуре 750°С, на вольфрамовом катоде. Были получены серии поляризационных кривых, как в чистом расплаве, так и с добавками оксидов циркония и алюминия, при скоростях развертки потенциала от 0,1 до 2 В. Показано, что разряд ионов алюминия наблюдается отрицательнее потенциала –1.6 В, а при потенциале от –1.8 до –1.9 В формируется пик Al соответствующий восстановлению ионов алюминия. В области потенциалов положительнее –1.6 В также отмечается катодный процесс AlxWy, предположительно связанный с восстановлением ионов алюминия и образованием его интерметаллидных соединений с вольфрамом. При добавлении ZrO2 в исследуемый расплав на вольтамперограммах дополнительно появляются площадка Zr и пик Al+Zr при потенциалах –1.3 и –1.6 В, связанные с разрядом ионов циркония и совместным разрядом ионов циркония и алюминия соответственно. При развертке потенциала в анодную область наблюдается пик Al’ при потенциале около –1.6 В и волны Al’ и Zr’, связанные с окислением металлического алюминия и алюминия с цирконием из интерметаллидного соединения, соответственно. Для вольфрамового электрода, ожидаемо наблюдается рост плотностей токов пика Al+Zr и смещение потенциала при повышении скорости развертки потенциала, что указывает на электрохимическую необратимость исследуемого процесса.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации