Одним из путей повышения эффективности алюминиевого производства является использование низкоплавких электролитов и получение востребованных лигатур алюминия. Ранее было отмечено, что эффективным является получение лигатур алюминия при электролизе низкотемпературных электролитов, позволяющее организовать производство без необходимости получения индивидуальных легирующих элементов и алюминия. Актуальным как с практической, так и с научной точки зрения является изучение возможности получения лигатур алюминия с такими электроотрицательными элементами как скандий, иттрий, стронций, кальций и др. В настоящей работе изучена возможность получения лигатуры Al-Y при электролизе низкоплавкого электролита на основе системы KF-AlF с добавкой YO и температурой 800С. Для этого в исследуемом расплаве с разным содержанием оксида иттрия методом хроновольтамперометрии исследована кинетика катодного процесса на молибденовом и стеклоуглеродном электроде. Показано, что добавка YO практически не сказывается на ходе вольтамперных зависимостей и на механизме процесса, повышая катодные токи восстановления ионов алюминия и иттрия, а также анодные токи окисления продуктов катодной реакции. На основании электрохимических измерений предположено, что совместное восстановление алюминия с иттрием возможно при плотностях тока выше 0.4-0.5 А/см. Изучен процесс получения сплавов Al-Y в расплаве KF-NaF-AlF с добавкой 1 мас.% YO в условиях алюминотермического синтеза и при гальваностатическом электролизе расплава при катодной плотности тока 0.5 и 1.0 А/см. В результате алюминотермического восстановления получен сплав с содержанием иттрия не выше 0.07 мас.%, в то время как при электролизе получены лигатуры Al-Y с содержанием иттрия от 0.75 до 1.28 мас.%. Полученные величины соответствуют извлечению иттрия из его оксида 4.4; 47.5 и 81.3. Сделано предположение, что увеличение длительности синтеза и периодическая подгрузка YO в расплав позволят получать лигатуры Al-Y с повышенным содержанием иттрия.
Благодаря своей распространенности в природе и свойствам, кремний является одним из самых востребованных материалов в различных отраслях промышленности. В настоящее время металлургический кремний получают карботермическим восстановление кварца, который затем подвергают гидрохлорированию и многократному хлорированию для получения солнечного кремния. В данном кратком обзоре представлен анализ альтернативных методов получения кремния электролизом расплавленных солей. Рассмотрены факторы, определяющие выбор состава расплавленных солей, типичные осадки кремния, полученные электролизом. Выполнена оценка результатов и перспектив дальнейшего использования электроосажденного кремния в литий-ионных источниках тока и репрезентативные результаты испытаний по использованию электролитического кремния в устройствах преобразования солнечной энергии. Отмечены задачи, которые необходимо решить для практической реализации методов электролитического производства образцов кремния, пригодных для новых устройств и материалов преобразования и накопления энергии.
Благодаря возможности управления составом и морфологией одним из перспективных способов получения кремния и его материалов является электролиз расплавленных солей. Однако для этого необходимы данные о влиянии различных факторов на кинетику электроосаждения кремния. В настоящей статье методами циклической вольтамперометрии и хроноамперометрии изучено влияние материала катодной подложки на кинетику электровосстановления ионов кремния в малофторидном расплаве (мас. %) 57KCl–43CsCl с добавкой 2.8 мас. % K2SiF6 при температуре 730°С. В качестве подложек выбраны взаимодействующие и индифферентные по отношению к кремнию материалы: стеклоуглерод, серебро и никель. На стеклоуглеродном электроде электровосстановление ионов кремния протекает в области потенциалов отрицательнее –0.05 В, на серебряном – отрицательнее 0.05 В, и на никелевом – отрицательнее 0.40 В относительно потенциала кремниевого квазиэлектрода сравнения. Для всех исследованных подложек наблюдается протекание катодного процесса, не являющегося электрохимически обратимым. При этом, согласно хроноамперным измерениям, стадия зарождения новой фазы на катоде не оказывает влияния на кинетику исследуемого процесса. Предположительно, в случае стеклоуглерода и серебра необратимость может вызвана замедленным разрядом, в то время как на никелевом электроде электроосаждение кремния сопровождается образованием силицидов никеля. Из вольтамперных и хроноамперных зависимостей был оценен коэффициент диффузии ионов кремния к стеклоуглеродному электроду, значения которого составили 1.5 · 10–5 и 1.2 · 10–5 см2/с соответственно.
Возможность использования анодов на основе кремния в литий-ионных источниках тока активно исследуется благодаря повышенной емкости кремния по литию. В работе сообщается о получении субмикронных волокон кремния на стеклоуглероде в расплаве KI–KF–KCl–K2SiF6 при температуре 720°С. Для этого методом циклической вольтамперометрии определены параметры электроосаждения кремния в виде волокон, в условиях гальваностатического электролиза получены экспериментальные партии упорядоченных волокон кремния средним диаметром от 0.1 до 0.3 мкм и с использованием полученных волокон кремния изготовлены анодные полуэлементы литий-ионных источников тока и изучено их электрохимическое поведение при многократном литировании и делитировании. При помощи вольтамперных исследований отмечено, что заряд и разряд анода на основе полученных волокон кремния происходит при потенциалах от 0.2 до 0.05 В и от 0.2 до 0.5 В, соответственно. Выполнено циклирование электроосажденных волокон кремния в составе анодных полуэлементов литий-ионных источников тока. В зависимости от тока заряда разрядная емкость составила от 200 до 500 мАч/г при Кулоновской эффективности 98–100%. Также выполнено многократное циклирование образца литий-ионного источника тока с литиевым противоэлектродом. В ходе 800 циклирований током 0.5С разрядная емкость образца снизилась с 165 до 65 мАч/г. При помощи сканирующей электронной микроскопии показано объемное расширение волокон кремния в ходе многократного циклирования.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации