Сплавы на основе титана и алюминия с добавками ниобия и редкоземельных металлов (РЗМ) обладают уникальными механическими и жаропрочными свойствами, также вероятна повышенная коррозионная стойкость таких сплавов. Методом термодинамического моделирования с использованием программы HSC изучена система с расходом алюминия, варьирующимся в интервале от 0 до 100% к массе исходной шихты. Исследованы особенности фазообразования в системах Al–[50TiO2–5Nb2O5–1Y2O3 (Gd2O3)]. Расчет теплового баланса процесса при 1600°C и расходе 44% Al составил – 0.196 МДж на 1 кг шихты, что указывает на возможность его протекания только за счет реализации алюминотермических реакций. Восстановление титана и ниобия может протекать по реакциям через образование их оксидов низшей валентности – TiO, NbO2, NbO. Алюминотермическое восстановление гадолиния термодинамически возможно только при температурах менее 1200°C. Восстановление иттрия через взаимодействие Y2O3 с алюминием c образованием соединений AlY, Al2Y3 AlY2 для интервала 1000–1800°C термодинамически невозможно. Результаты термодинамического моделирования взаимодействий хорошо коррелировали с данными дифференциально-термического и рентгенофазового анализов при использовании синхронного термического анализа, выполненного с помощью прибора STA 449 F3 Jupiter (NETZSCH) и дифрактометра XRD-7000 (Shimadzu) с автоматическим программным управлением, соответственно. Найдено, что процесс вступает в активную фазу после появления жидкого алюминия и, видимо, сопровождается экзотермическими эффектами с образованием двойных и тройных интерметаллических соединений алюминия с редкими (Nb, Ti) и редкоземельными (Gd, Y) металлами. Трансформация диоксида титана и пентаоксида ниобия в процессе превращений, вероятно, осуществляется через последовательные и параллельные стадии образования простых и сложных оксидов с низкими степенями окисления. На начальных этапах взаимодействия алюминия с оксидами, в основном, образуются алюминиды ниобия и титана. На последующих стадиях наблюдается формирование более сложных соединений. При температурах выше 1300°C образуются тройные интерметаллические соединения Al43Nb4Gd6, Ti4Al20Gd и Ti4Al3Y6, Al3Ti, Al0.23Nb0.07Ti0.7. Гадолиний и иттрий в таких системах склонны к образованию сложных интерметаллидов.
Для определения термохимических характеристик: энтальпии, молярной теплоемкости и энергии Гиббса образования силицидов, боридов и карбидов в сплаве заданного состава (40Fe–31Ni–16Cr–5Cu–5Si–2B–1C) использованы расчетные методики с использованием смешанных схем GGA и GGA + U (полуэмпирически настроенные обобщенные градиентные аппроксимации). В исследовании использовались три модуля программного пакета HSC Chemistry 6.0 (Metso Outotec, версия 6.0, Эспоо, Финляндия). Во-первых, модуль “Reaction Equation” (“Уравнения реакций” – расчет термодинамических функций в интервале температур для индивидуальных веществ или химических реакций) использовался для расчета изменения свободной энергии Гиббса при различных температурах. Во-вторых, для расчета состава каждого химического вещества в равновесном состоянии использовался модуль “Equilibrium Composition” (“Равновесные составы” – расчет равновесных составов фаз при наличии обратимых химических реакций). В-третьих, модуль “H, S, C and G diagrams” (“Графики термодинамических функций” – построение графиков термодинамических функций) использовался для определения относительной фазовой стабильности соединений в зависимости от температуры в виде диаграмм Эллингема. Результаты термохимического моделирования показали, что значения теплоемкости образования упрочняющих соединений в сплаве увеличиваются по мере повышения температуры. Термодинамические расчеты энтальпий упрочняющих фаз в сплаве показали, что при температуре >1400°С имеет место образование силицидов, боридов и карбидов. При рассмотрении ∆G(T) силицидов наблюдается рост значений энергии Гиббса и стремление к стабильности с повышением температуры. При образовании боридов в сплаве наблюдается сильное поглощение тепла и увеличение энергии Гиббса в исследованном интервале температур. Результаты расчета энергии Гиббса в зависимости от температуры показали, что будут образовываться карбиды Ni3C, Fe3C, SiC, B4C, Cr3C2, Cr4C, Cr7C3. Агрегатное и полиморфные превращения происходят с уменьшением значений энергии Гиббса до температуры ~1500°С. С дальнейшим повышением температуры выявлен эффект поглощения тепловой энергии, которое связано с высокой температурой упорядочения структур карбидов. Таким образом, термохимическим исследованием обоснована возможность образования силицидов, боридов, карбидов в сплаве 40Fe–31Ni–16Cr–5Cu–5Si–2B–1C.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation