RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Electrical conductivity of salt melts, containing zirconium tetrachloride

PII
S0235010625020076-1
DOI
10.31857/S0235010625020076
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
161-175
Abstract
The present paper presents an overview of the available experimental data (both our data and provided by other researchers) on the electrical conductivity of ZrCl₄–containing salt melts, for which the saturated vapor pressure of ZrCl₄ above them is P ⩽ 1 atm. These melts have a significant practical application potential. Such mixtures are divided into high‒temperature mixtures with a ZrCl₄ concentration of 0‒30 mol. %, and low‒temperature ones, with a narrower ZrCl₄ content range of 50‒75 mol. %. Based on the obtained experimental data it was found that the electrical conductivity of all molten ZrCl₄–containing mixtures increases as the temperature increases, zirconium tetrachloride concentration decreases, and the molten solvent salt is replaced in the row from CsCl to LiCl. The experimental data obtained are summarized and discussed taking into account the available information on the structure of the molten mixtures. Electrical conductivity of high–temperature MCl‒ZrCl₄ melts (0‒30 mol. % ZrCl₄; M is an alkali metal), is in the range of 0.6–3.1 Cm/cm, which is significantly higher than the electrical conductivity of low–melting molten mixtures of the same chlorides (0.1‒0.5 Cm/cm) with a high content of ZrCl₄ (55‒75 mol. %). It has been found that the use of low‒melting salt solvents, for example, LiCl–KCl eutectic, makes it possible to expand the range of existence of ZrCl₄‒containing melts by hundreds of degrees towards lower temperatures and saturated vapor pressures at sufficiently high values of electrical conductivity (0.9–2.8 Cm/cm). This provides additional advantages for the organization of various technological processes.
Keywords
ZrCl₄ электропроводность расплавленные соли хлориды щелочных металлов
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Морозов И.С. Применение хлора в металлургии редких и цветных металлов. М.: Наука. 1966.
  2. 2. Металлургия циркония и гафния / Под ред. Л.Г. Нехамкина. М.: Металлургия. 1979.
  3. 3. Дробот Д.В., Лысакова Е.И., Резник А.М. Избранные главы химии и технологии редких и рассеянных элементов. Химия и технология циркония и гафния. М.: МИТХТ им. М.В. Ломоносова. 2013.
  4. 4. Шека И.А., Карлышева К.Ф. Химия гафния. Киев: Наукова думка. 1972.
  5. 5. Flengas S.N., Pint P. Potential chloride electrolytes for recovering the metals Ti, Zr and Hf by fused salt electrolysis // Canad. Metallurg. Quart. 1969. 8. № 2. P. 151−166.
  6. 6. Flengas S.N., Block‒Bolten A. Solubilities of reactive gases in molten salts. In: Advances in molten salt chemistry. Braunstein, G. Mamantov, and G. P. Smith, Eds., New York: Plenum Press. 1973. 2. P. 27–81.
  7. 7. Howell L.J., Sommer R.C., Kellogg H.H. Phase diagram and vapor pressure in the systems NaCl–ZrCl₄, KCl–ZrCl₄, and NaCl–KCl (1:1 molar) –ZrCl₄ // J. Metals. 1957. 9. № 1. P. 193–200.
  8. 8. Kim J.D., Spink D.R. Vapor pressure in systems sodium chloride−potassium chloride (8:29 molar) – zirconium tetrachloride and sodium chloride‒potassium chloride (8:29 molar) −hafnium tetrachloride // J. Chem. Eng. Data. 1974. 19. № 1. P. 36−42.
  9. 9. Smirnov M.V., Salyulev A.B., Kudyakov V.Ya. Thermodynamic properties and decomposition potential of HfCl4 solutions in molten alkali chlorides and their mixtures // Electrochim. Acta. 1984. 29. № 8. P. 1087–1100.
  10. 10. Salyulev A.B., Potapov A.M. Electrical conductivity of ZrCl₄ solutions in molten LiCl, NaCl−KCl (1:1) and HfCl4 solutions in molten KCl // Z. Naturforsch. 2022. 77a. № 10. P. 941−948.
  11. 11. Salyulev A.B., Khokhlov V.A., Redkin A.A. Electrical conductivity of low‒temperature NaCl−KCl−ZrCl₄ melts // Russ. Metallurgy (Metally) 2014. 2014. № 8. P. 659−663.
  12. 12. Salyulev A.B., Potapov A.M. Electrical conductivities of low‒temperature KCl−ZrCl₄ and CsCl−ZrCl₄ molten mixtures // Z. Naturforsch. 2018. 73a. № 3. P. 259−263.
  13. 13. Salyulev A.B., Potapov A.M. Electrical conductivity of zirconium tetrachloride solutions in molten sodium, potassium and cesium chlorides // Z. Naturforsch. 2019. 74a. № 10. P. 925−930.
  14. 14. Salyulev A.B., Potapov A.M. Electrical conductivity of ZrCl₄ solutions in the molten LiCl−KCl eutectic mixture // Russ. Metallurgy (Metally). 2024. 2024. № 8. P. 204 −210.
  15. 15. Salyulev A.B., Khokhlov V.A., Moskalenko N.I. Electrical conductivity of KAlCl4−ZrCl₄ molten mixtures // Russ. Metallurgy (Metally). 2017. 2017. № 2. P. 95−99.
  16. 16. Smirnov M.V., Stepanov V.P., Khokhlov V.A. Ionic structure and physicochemical properties of molten halides // Rasplavy. 1988. № 1. P. 51−59.
  17. 17. Kirillov S.A., Pavlatou E.A., Papatheodorou G.N. Instantaneous collision complexes in molten alkali halides: Picosecond dynamics from low‒frequency Raman data // J. Chem. Phys. 2002. 116. № 21. P. 9341−9351.
  18. 18. Wang J., Wu J., Lu G., Yu J. Molecular dynamics study of the transport properties and local structures of molten alkali metal chlorides. Part III. Four binary systems LiCl–RbCl, LiCl–CsCl, NaCl–RbCl and NaCl–CsCl // J. Mol. Liq. 2017. 238. P. 236–247.
  19. 19. Van Artsdalen E.R., Yaffe I.S. Electrical conductance and density of molten salt systems: KCl−LiCl, KCl−NaCl and KCl−KI // J. Phys. Chem. 1955. 59. № 2. P. 118−127.
  20. 20. Janz G.J. Thermodynamic and transport properties for molten salts // J. Phys. Chem. Ref. Data. 1988. 17. № 2. P. 1–325.
  21. 21. Salyulev A.B., Potapov A.M. Electrical conductivity of (LiCl−KCl)eut. −SrCl2 molten mixtures // J. Chem. Eng. Data. 2021. 66. № 12. P. 4563−4571.
  22. 22. Potapov A.M., Rycerz L., Gaune‒Escard M. Electrical conductivity of melts containing rare‒earth halides. I. MCl–NdCl3 (M = Li, Na, K, Rb, Cs) // Z. Naturforsch. 2007. 62a. № 7. P. 431–440.
  23. 23. Салюлев А.Б., Хохлов В.А., Москаленко Н.И. Электропроводность расплавленных смесей KAlCl4–ZrCl₄ в широком интервале температур // Расплавы. 2018. № 6. С. 674–681.
  24. 24. Салюлев А.Б., Корнякова И.Д. Спектры комбинационного рассеяния расплавленного и парообразного тетрахлорида циркония // Расплавы. 1994. № 2. C. 60–64.
  25. 25. Photiadis G.M., Papatheodorou G.N. Vibrational modes and structure of liquid and gaseous zirconium tetrachloride and of molten ZrCl₄–CsCl mixtures // J. Chem. Soc., Dalton Trans. 1998. № 6, P. 981–989.
  26. 26. Салюлев А.Б., Редькин А.А. Измерение электропроводности расплавленных ZnCl2, PbCl2, NiCl2, ZrCl₄ и HfCl4 при повышенном давлении паров // Расплавы. 1996. № 3. С. 20–27.
  27. 27. Salyulev A.B., Potapov A.M. Conductivity of some molten chlorides at elevated temperatures II. Electrical conductivity of molten chlorides (InCl3, ZrCl₄, HfCl4) with negative temperature coefficients // J. Chem. Eng. Data. 2021. 66. № 1. P. 322−329.
  28. 28. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. 1976. A 32. P. 751−767.
  29. 29. Kipouros G.J., Flint J.H., Sadoway D.R. Raman spectroscopic investigation of alkali‒metal hexachloro compounds of refractory metals // Inorg. Chem. 1985. 24. № 23. P. 3881−3884.
  30. 30. Салюлев А.Б., Закирьянова И.Д., Вовкотруб Э.Г. Исследование продуктов взаимодействия ZrCl₄ и HfCl4 с хлоридами щелочных металлов и с пентахлоридом фосфора методом спектроскопии КР // Расплавы. 2012. № 5. С. 53–61.
  31. 31. Howell L.J., Kellogg H.H. Electrical conductivity of melts in the systems NaCl – ZrCl₄ and NaCl – KCl (1:1 molar) – ZrCl₄ // Trans. Metallurg. Soc. of AIME. 1959. 215. № 2. P. 143–145.
  32. 32. Kim J.D., Spink D.R. Vapor pressure in systems NaCl – KCl (8:29 molar) – ZrCl₄ and NaCl – KCl (8:29 molar) – HfCl4 // J. Chem. Eng. Data. 1974. 19. № 1. P. 36–42.
  33. 33. Katyshev S.F., Teslyuk L.M. Conductivity of molten LiF–ZrF4, NaF–ZrF4, KF–ZrF4, RbF–ZrF4, and CsF–ZrF4 systems // Russ. J. Electrochem. 2009. 45. № 7, P. 823–827.
  34. 34. Daněk V. Physico‒chemical analysis of molten electrolytes. Amsterdam, Boston, Heidelberg et al.: Elsevier, 2006.
  35. 35. Niselson L.A., Egorov E. A., Chuvilina E.L., Arzhatkina O.A., Fedorov V.D. Solid‒liquid and liquid‒vapor equilibria in the Zr(Hf)Cl4–KAlCl4 systems: A basis for the extractive distillation separation of zirconium and hafnium tetrachlorides // J. Chem. Eng. Data. 2009. 54. № 3. P. 726–729.
  36. 36. Панфилов А.В., Коробков А.В., Бузмаков В.В., Терешин В.В., Ившина А.А., Абрамов А.В., Данилов Д.А., Чукин А.В., Половов И.Б. Изучение состава расплава KCl–AlCl3 –ZrCl₄ –HfCl4 применительно к экстрактивной ректификации хлоридов циркония и гафния // Расплавы. 2024. № 2. С. 211−222.
  37. 37. Ивановский Л.Е., Хохлов В.А., Казанцев Г.Ф. Физическая химия и электрохимия хлоралюминатных расплавов. – М.: Наука. 1993.
  38. 38. Salyulev A.B., Potapov A.M., Moskalenko N.I. Electrical Conductivity of ZnCl2–ZrCl₄ molten mixtures // Russ. Metallurgy (Metally). 2015. 2015. № 2. P. 97−102.
  39. 39. Kalampounias A.G., Papatheodorou G.N., Yannopoulos S.N. Light scattering from glass‒forming molten salts // Z. Naturforsch. 2002. 57A. № 1‒2. P. 65–70.
  40. 40. Nanjo M., Kanai T. Electrical conductivity of binary melts containing AlCl3, FeCl3, ZnCl2, MgCl2, NaCl and KCl // Proc. of the First Intern. Symposium on Molten Salt Chemistry and Technology. Kyoto, Japan. 1983. P. 253–256.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library