RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Effect of Adsorption of Halogenide Ions on the Capacity of Iridium Electrode in Molten Salts

PII
S30345715S0235010625050015-1
DOI
10.7868/S3034571525050015
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
421-429
Abstract
The adsorption activity of the iridium electrode in molten sodium, potassium and cesium chlorides and bromides, sodium and potassium iodides was estimated from the dependence of the shape and position of the capacitance curve on the cation-anion composition of the electrolyte, the AC frequency and temperature. The capacitance curves have a complex shape with two main minima and a maximum between them in the entire studied ranges of temperature, frequency and electric polarization. In some cases, one or two additional minimа appear on the curves between the main minima. The position of both the minima and maxima of the capacitance depends on the radius of the salt cation and anion. The dependence of the position of the main maximum of the capacitance on the radius of the cation and anion is presented at T=1093 K in the AC frequency range of 3·100–1·104 Hz. According to this approach, the potential of the capacitance maximum of a solid metal electrode in ionic melts with specifically adsorbing anions can be considered as the critical potential of the adsorption phase transition. The segment of the capacitance curve ΔE from the cathodic capacitance minimum, which corresponds to the classical minimum capacitance, to the capacitance maximum can be considered as a range of potentials in which the change in the properties of the double electric layer obey the Gouy-Chapman-Stern model. With a further shift from the critical potential to the positive direction, the electrostatic adsorption mechanism turns into chemical adsorption, with the transfer of part of the anions from the salt phase to the electrode and the formation of complex compounds. The value of ΔE can help to estimate the effect of specific adsorption of halide ions on the shape of the capacitance curve.
Keywords
иридий галогениды щелочных металлов емкость двойной электрический слой адсорбция
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Букун Н.Г., Алексеева P.A. Емкость двойного слоя золота в хлоридном расплаве // Электро- химия.1975. 11. С. 239–249.
  2. 2. Букун Н.Г., Укше Е.А. Электростатическая адсорбция ионов и строение двойного элек- трического слоя в бинарных солевых расплавах // Физическая химия и электрохимия расплавов, солей и шлаков. Тр. 3 Всесоюзного совещания, май 1966. Л.: Химия. 1968. С. 214−223.
  3. 3. Делимарский Ю.К., Кихно В.С. Определение нулевых точек некоторых твердых металлов в расплавленной смеси NaCl-KCl по измерению емкости двойного слоя // Украинский химический журнал. 1964. 30. С. 1156.
  4. 4. Делимарский Ю.К., Кихно В.С. Нулевые точки металлов в расплавленных солях // Элек- трохимия. 1969. 5. № 2. С. 145−150.
  5. 5. Фрумкин А.Н. Потенциалы нулевого заряда. М.: Наука. 1979. 260 с.
  6. 6. Nishi N., Hashimoto A., Minami E. and Sakka T. Electrocapillarity and zero-frequency differential capacitance at the interface between mercury and ionic liquids measured using the pendant drop method // Phys. Chem. Chem. Phys. 2015. 17. 5219.
  7. 7. Pajkossy T., Kolb D.M. Anion-adsorption-related frequency-dependent double layer capaci- tance of the platinum-group metals in the double layer region // Electrochimica Acta. 2008.53. P. 7403–7409.
  8. 8. Pajkossy T., Müller C., Jacob T. The metal–ionic liquid interface as characterized by impedance spectroscopy and in situ scanning tunneling microscopy // Phys. Chem. Chem. Phys. 2018. 20. P. 21241–21250.
  9. 9. Alam M., Islam M., Okajima T., Ohsaka T. Capacitance Measurements in a Series of Room-Tem- perature Ionic Liquids at Glassy Carbon and Gold Electrode Interfaces // J. Phys. Chem. С. 2008. 112. P. 16600–16608.
  10. 10. Степанов В.П. Физическая химия поверхности твердых электродов в солевых расплавах. Екатеринбург: УрО РАН. 2005. 324 с.
  11. 11. Докашенко С.И., Степанов В.П. Строение двойного электрического слоя на жидких металлических электродах в индивидуальных расплавах галогенидов щелочных метал- лов // Электрохимия. 1993. 29. 11. С. 1301−1305.
  12. 12. Степанов В.П., Докашенко С.И., Кириллова Е.В. Частотная зависимость потенциалов минимума емкости электродов из металлов подгруппы меди в расплавах галогенидов щелочных металлов // Электрохимия. 2012. 48. № 10. С. 1073–1078.
  13. 13. Kirillova E.V., Stepanov V.P. A Potential-Induced Transformation in the Double Electrical Layer on the Rhenium Electrode in Alkali Chloride Melts // Materials. 2021. № 14(20). P. 6009.
  14. 14. Kirillova E.V., Stepanov V. P. The оrdеr-disоrdеr phase transition in the adsorption layer at а gold electrode in molten alkali bromides // Current Topics in Electrochemistry. 2022. 249. P. 101–108.
  15. 15. Кириллова Е.В. Емкость и импеданс иридиевого электрода в расплавленных хлоридах щелочных металлов // Расплавы. 2023. 1. С. 68–77.
  16. 16. Kirillova E.V. Capacitance and Impedance of an Iridium Electrode in Molten Alkaline Metal Bromides // Russian Metallurgy (Metally). 2024. № 4. P. 763–767.
  17. 17. Iridium: compounds information // URL: https://www.webelements.com/iridium/compounds.html
  18. 18. Magnussen O.M. Ordered Anion Adlayers on Metal Electrode Surfaces // Chem. Rev. 2002. 102. P. 679−725.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library