- PII
- S30345715S0235010625050085-1
- DOI
- 10.7868/S3034571525050085
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 5
- Pages
- 507-521
- Abstract
- Solders with a low melting point are necessary to solve the problem of integration of microcircuits and the reliability of their packaging, as well as to reduce thermal loads. To develop the next generation of electronic components, it is necessary to develop technologies for producing low-temperature compounds. This problem can be solved by creating solders, including those made of high-entropy alloys, differing in that they are characterized by the formation of solid solutions. These materials must be resistant to fatigue loads, exhibit plasticity, and adhere to other metallic materials. To reduce their toxicity, it is necessary to eliminate lead, which is usually found in solders. This paper presents the results of calculations of melting temperature, thermal conductivity, size factor δ, generalized thermodynamic parameter Ω, electronegativity, valence electron concentration, enthalpy, entropy, Gibb’s energy of mixing and other properties and parameters for 56 variants of five-component alloys of equiatomic composition from low-melting elements: Al, Zn, Bi, Pb, Sn, In, Ga and Sb, including, lead. The HEAPS program was used for the calculation, taking into account the inaccuracy in this program of the melting temperatures of tin, antimony, and indium, which differ from the observed ones. The VEC values for In, Sn, and Sb have been clarified. Based on the analysis of the calculated data, the compositions of potentially high-entropy alloys (HES) have been identified. It is shown that all alloys containing lead, as well as GaBiZnSnIn, GaBiZnSbIn, and AlGaBiZnIn alloys, do not satisfy the values of the δ parameter. They can form multiphase solid solutions, intermetallic compounds (IMC), and bulk-amorphous metallic glasses. The remaining variants of lead-free HEA-solders satisfy most parameters and can form solid solutions, with only AlGaZnSnSb being single-phase, and all others being multiphase solid solutions. The accumulated relatively large array of experimental and theoretical data can provide clarification of the criteria for the formation of the structure and properties of lead-free wind farms, which are in demand in practice.
- Keywords
- высокоэнтропийные сплавы (BЭC) легкоплавкие элементы неупорядоченные твердые растворы полуэмпирические параметры
- Date of publication
- 01.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 10
References
- 1. Zhang Y. High-entropy materials: a brief introduction. Singapore: Springer Nature. 2019. https://doi.org/10.1007/978-981-13-8526-1
- 2. Murty B.S., Yeh J.W., Ranganathan S., Bhattacharjee P.P. High-entropy alloys. Amsterdam: Elsevier. 2019. https://doi.org/10.1016/C2017-0-03317-7
- 3. Yeh J.-W. High-entropy multielement alloys. Patent US. no. US 20020159914 A1. 2002.
- 4. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes // Adv. Eng. Mater. 2004. 6. P. 299–303. https://doi.org/10.1002/adem.200300567
- 5. Багаев А., Рукурев А., Иванов И., Юргин А., Багаев И. Обзор исследований сплавов, разработанных на основе энтропийного подхода // Обработка металлов. 2021. 23 (2). С. 116–146. https://doi.org/10.17212/1994-6309-2021-23.2-116-146
- 6. Рогачев А.С. Структура, стабильность и свойства высокоэнтропийных сплавов // Физика металлов и металловедение. 2020. 121 (8). С. 807–841. https://doi.org/10.31857/S0015323020080094
- 7. Гельчинский Б.Р., Балкин И.А., Юрьев А.А., Ремпель А.А. Высокоэнтропийные сплавы: исследование свойств и перспективы применения в качестве защитных покрытий // Успехи химии. 2022. 91 (6). RCR5023. https://doi.org/https://doi.org/10.1070/RCR5023
- 8. Zhang W., Liaw P.K., Zhang Y. Science and technology in high-entropy alloys // Science China Materials. 2018. 61 (1). P. 2–22. https://doi.org/10.1007/s40843-017-9195-8
- 9. Упоров С.А., Эстемирова С.Х., Стерхов Е.В., Зайцева П.В., Скрыльник М.Ю., Шуняев К.Ю., Ремпель А.А. Особенности кристаллизации, структуры и термической стабильности высокоэнтропийных сплавов GdTbDyHoSc и GdTbDyHoY // Расплавы. 2022. 5. C. 443–453. https://doi.org/10.31857/S0235010622050097
- 10. Feuerbacher M., Lienig T., Thomas C. A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system // Scripta Materialia. 2018. 152. P.40–43. https://doi.org/10.1016/J.SCRIPTAMAT.2018.04.009
- 11. Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B. Mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys // Intermetallics. 2011. 19 (5). P. 698–706. https://doi.org/10.1016/j.internet.2011.01.004
- 12. Осинцев К.А., Громов В.Е., Коновалов С.В., Иванов Ю.Ф., Панченко И.А. Высокоэнтропийные сплавы: структура, механические свойства, механизмы деформации и применение // Известия вузов. Черная металлургия. 2021. 64 (4). C. 249–258. https://doi.org/10.17073/0368-0797-2021-4-249-258
- 13. Трофименко Н.Н., Ефимонкин И.Ю., Большакova А.Н. Проблемы создания и перспективы использования жаропрочных высокоэнтропийных сплавов // Авиационные материалы и технологии. 2018. 5. C. 3–8. https://doi.org/10.18577/2071-9140-2018-0-2-3-8
- 14. Винник Д.А., Трофимов Е.А., Живулин В.Е., Зайцева О.В., Стариков А.Ю., Жильцова Т.А., Савина Ю.Д., Гудкова С.А., Жеребцов Д.А., Попова Д.А. Образование высокоэнтропийных октаэдрических кристаллов в многокомпонентных оксидных системах // Вестник ЮУрГУ. Серия: Химия. 2019. 11(3). C. 32–39. https://doi.org/10.14529/chem190303
- 15. Gromov V.E., Ivanov Yu.F., Semin A.P., Panin S.V., Borovskii S.V., Petrikova E.A., Zhang P., Serebryakova A.A. Structure and Deformation Behavior of a High-Entropy AlCoCrFeNiMn Alloy Ribbon //Russ. Metall. 2024. 2024. P. 1064–1070. https://doi.org/10.1134/S0036029524702021
- 16. Liu Y., Pu L., Yang Y., He Q., Zhou Z., Tan C., Zhao X., Zhang Q., Tu K.N. A high-entropy alloy as very low melting point solder for advanced electronic packaging // Materials Today Advances. September 2020. 7:100101. https://doi.org/10.1016/j.mtadv.2020.100101
- 17. Чикова О.А., Ильин В.Ю., Цепелев В.С., Вьюхин В.В. Вязкость высокоэнтропийных расплавов системы Cu-Sn-Bi-Pb-Ga // Неорганические материалы. 2016. 52(5). C. 564–569. https://doi.org/10.7868/S0002337X1605002X
- 18. Чикова О.А., Ильин В.Ю., Цепелев В.С., Вьюхин В.В. Вязкость высокоэнтропийных расплавов системы Cu-Sn-Bi-Pb-Ga // Расплавы. 2015. 1. C. 3–37.
- 19. Chikova O.A., Shmakova K.Yu., Tsepelev V.S. Measurement of the Phase Equilibrium Temperatures of High-Entropy Metallic Alloys by a Viscometric Method // Russian Metallurgy (Metally). 2016. 3. P.218–222. https://doi.org/10.1134/S003602951603006X
- 20. Вьюхин В.В., Чикова О.А., Цепелев В.С. Поверхностное натяжение жидких высокоэнтропийных эквиатомных сплавов системы Cu-Sn-Bi-In-Pb // Журнал физической химии. 2017. 91 (4), С. 582–585. https://doi.org/10.7868/S0044453717040343
- 21. Шепелевич В.Г., Гусакова О.В. Сплавы системы Sn-Zn-Ga для бессвинцовой пайки, полученные высокоскоростным затвердеванием // Журнал Белорусского государственного университета. Физика. 2020. 2. С. 50–61. https://doi.org/10.33581/2520-2243-2020-2-50-61
- 22. Гусакова О.В., Шепелевич. В.Г. Сплавы системы Sn-Zn-Bi-Ga для бессвинцовой пайки, полученные высокоскоростным затвердеванием // Журнал Белорусского государственного университета. Экология. 2020. 4. С. 79–85. https://doi.org/10.46646/2521-683X/2020-4-79–85
- 23. Cheng, S., Huang, C.-M., & Pecht, M. (2017). A review of lead-free solders for electronics applications // Microelectronics Reliability. 75. P. 77–95. https://doi.org/10.1016/j.microrel.2017.06.016
- 24. Sidorov V., Drápala J., Uporov S., Sabirzyanov A., Popel P., Kurochkin A., Grushevskij K. Some physical properties of Al–Sn–Zn melts // EPJ Web of Conferences. 2011. 01022. https://doi.org/10.1051/epjconf/20111501022
- 25. Bharath Krupa Teja M., Sharma A., Das S., Das K. A review on nanodispersed lead-free solders in electronics: synthesis, microstructure and intermetallic growth characteristics // J. Mater. Sci. 2022. 57, 8597–8633. https://doi.org/10.1007/s10853-022-07187-8
- 26. Чикова О.А., Цепелев В.С., Вьюхин В.В., Шмакова К.Ю. Расслоение и условия кристаллизации расплава Cu–Sn–In–Bi–Cd эквиатомного состава // Расплавы. 2015. 3. С.27–31.
- 27. Zhou Kaiyao, Tang Zhongyi, Lu Yiping, Wang Tongmin, Wang Haipeng, Li Tingju. Composition, Microstructure, Phase Constitution and Fundamental Physicochemical Properties of Low-Melting-Point Multi-Component Eutectic Alloys [J] // J. Mater. Sci. Technol. 2017. 33(2). P. 131–154.
- 28. Qiao J., Mao X., Tu K. -N., Liu Y. Microstructure and Intermetallic Growth Characteristics of Sn-Bi-In-xGa Quaternary Low Melting Point Solders // 2024 International Conference on Electronics Packaging (ICEP). Toyama, Japan. 2024. P. 13–14. https://doi.org/10.23919/ICEP61562.2024.10535549
- 29. Wu G., Shen J., Muhammad K. F., Zhou D., Wong Y. H., Si Z. Microstructure and mechanical properties of Cu/In-Zn-Sn-Bi/Cu joints bonded with high-entropy alloy solder at ultra-low temperature // J Mater Sci: Mater Electron. 2025. 36. 926. https://doi.org/10.1007/s10854-025-14903-y
- 30. Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys//Adv. Eng. Mater. 2008. 10(6). P. 534–538. https://doi.org/10.1002/adem.200700240
- 31. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. Design of high entropy alloys: A single-parameter thermodynamic rule // Scr. Mater. 2015. 104. P. 53–55. https://doi.org/10.1016/j.scriptamat.2015.03.023
- 32. Troparevsky M.C., Morris J.R., Kent P.R.C., Lupini A.R., Stocks G.M. Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys // Phys. Rev. X. 5. 2015. 011041. https://doi.org/10.1103/PhysRevX.5.011041
- 33. X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys // Material Chemistry and Physics. 2012. 132. P. 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021
- 34. Guo S., Hu Q., Ng C., Liu C. T. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase // Intermetallics. 2013. 41. P. 96–103. https://doi.org/10.1016/j.internet.2013.05.002
- 35. Wang Z., Huang Y., Yang Y., Wang J., Liu C. T. Atomic-size effect and solid solubility of multicomponent alloys // Scripta Materialia. 2014. 94. P. 28–31. https://doi.org/10.1016/j.scriptamat.2014.09.010
- 36. Poletti M.G., Battezzati L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems // Acta Materialia. 2014. 75. P. 297–306. https://doi.org/10.1016/j.actamat.2014.04.033
- 37. Юм-Розери B. Введение в физическое материаловедение: пер. с англ. / Вильям Юм-Розери; пер. В.М. Глазов, С.Н. Горин. – Москва: Металлургия, 1965. 203 с.
- 38. Zeng Y., Man M., Bai K., Zhang Y.-W. Revealing high-fidelity phase selection rules for high entropy alloys: A combined CALPHAD and machine learning study // Mater. Des. 2021. 202. 109532. https://doi.org/10.1016/j.matdes.2021.109532
- 39. Miedema A.R. On the heat of formation of solid alloys (II) // J. Less-Common Met. 1976. 46(1), P. 67–83. https://doi.org/10.1016/0022-5088 (76)90180-6
- 40. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys // Progress in Mater. Sci. 2014. 61. P. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
- 41. Singh A.K., Kumar N., Dwivedi A., Subramaniam A. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys // Intermetallics. 2014. 53. P. 112–119. https://doi.org/10.1016/j.internet.2014.04.019
- 42. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. Design of high entropy alloys: A single-parameter thermodynamic rule // Scr. Mater. 2015. 104. P. 53–55. https://doi.org/10.1016/j.scriptamat.2015.03.023
- 43. Ye Y.F., Wang Q., Lu J., Liu C.T., Yang Y. The generalized thermodynamic rule for phase selection in multicomponent alloys // Intermetallics. 2015. 59. P. 75–80. https://doi.org/10.1016/j.internet.2014.12.011
- 44. Martin P., Madrid-Cortes C.E., Cáceres C., Araya N., Aguilar C., Cabrera J.M. HEAPS: A user-friendly tool for the design and exploration of high-entropy alloys based on semi-empirical parameters” // Comp. Phys. Commun. 2022. 278. 108398. https://doi.org/10.1016/j.cpc.2022.108398
- 45. Yokokawa H. Tables of thermodynamic properties of inorganic compounds // Journal of the National Chemical Laboratory for Industry, Tsukuba Ibaraki 305, Japan. 1988. 83. P. 27–118.
- 46. Barin I., Knacke O. Thermochemical Properties of Inorganic Substances. Berlin: Springer-Verlag. 1973. 1073 p.