RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Solubility of CeO and NdO in LiCl-LiO melts

PII
S30345715S0235010625050109-1
DOI
10.7868/S3034571525050109
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
537-551
Abstract
Modern development of the nuclear industry requires a solution for the problems of spent nuclear fuel (SNF) processing, increasing the degree of nuclear fuel burn up and separating of fission products (FP) from fissile materials (FM). A promising method for solving these problems is pyrochemical reprocessing of SNF, one of the stages of which is oxide deposition. For safety reasons, the study is conducted using FM and FM simulators, including cerium and neodymium. In this work, the dissolution of neodymium (III) and cerium (IV) oxides in lithium chloride-based melts were studied. In the LiCl-LiO melt, with a LiO content not more than 4 mol.%, the solubility of cerium oxide remains below the detection limit, and then it significantly increases reaching 8.4∙10 and 2.4∙10 mol.% at 5 and 9 mol.% LiO respectively. In case of neodymium oxide its solubility in the LiCl-LiO melt increases linearly from 1.5∙10 mol.% at 2 mol.% LiO to 6.4∙10 mol.% at 9 mol.% LiO. The time to reach the saturation state during the dissolution of neodymium oxide is several times less than the time to reach the saturation state during the dissolution of neodymium oxide (25 hours for NdO versus 145 hours for CeO). To analyze the mechanisms of cerium and neodymium oxides dissolution, the phase composition of the ceramic tablets of these oxides after the experiment, as well as optical absorption spectra of the obtained melts were studied. Taking into account these data the possible mechanisms of interaction of cerium and neodymium oxides with LiCl-LiO melts (0–9 mol.%) were proposed. The dissolution of cerium oxide occurs in a two-stage process with the slow formation of intermediate insoluble cerium compounds followed by their transition to soluble forms LiCeO (for Ce) and LiCeO (for Ce), which causes the slow kinetics and nonlinear dependence on the LiO content. Neodymium oxide interacts with lithium oxide in the melt, forming a soluble lithium neodymate compound LiNdO2.
Keywords
оксид церия оксид неодима хлорид лития оксид лития растворимость метод изотермического насыщения спектроскопия оптического поглощения
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Adamov E.O., Ivanov V.B., Dzhalavyan A.V., Lopatkin A.V. Konceptual`ny`e polozheniya strategii razvitiya yadernoj e`nergetiki Rossii v perspektive do 2100 g // Atomnaya e`nergiya. 2012. T.112. № 6. S. 319–330. [In Russian]
  2. 2. Shadrin A.Yu., Ivanov V.B., Skupov M.V., Troyanov V.M., Zherebczov A.A. Sravnenie nekotory`x variantov texnologij zamknutogo yadernogo toplivnogo cikla // Atomnaya e`nergiya. 2016. T. 121. V. 2. S. 90–97. [In Russian]
  3. 3. Koyama T., Sakamura Y., Iizuka M., Kato T., Murakami T., Glatz J.-P. Development of Pyro-processing Fuel Cycle Technology for Closing Actinide Cycle // Procedia Chemistry. 2012. V.7. Pp.772–778.
  4. 4. Seregin M.B., Parshin A.P., Kuznetsov A.Yu., Ponomarev L.I. Solubility of UF4, ThF4, and CeF3 in a LiF–NaF–KF melt // Radiochemistry. 2011. 53(5). Pp. 491–493.
  5. 5. Ponomarev L.I., Seregin M.B., Mikhalichenko A.A., Parshin A.P. Validation of actinide fluo-ride simulators for studying solubility in fuel salt of molten-salt reactors // At. Energy. 2012. 112. Pp. 417–422.
  6. 6. Gourishankar K.V., Johnson G.K., Johnson I. Thermodynamics of Mixed Oxide Compounds, Li2O–Ln2O3 (Ln = Nd or Ce) // Metallurgical and Materials Transactions B. 1997. V. 28. Pp. 1103–1110.
  7. 7. Kato T., Sakamura Y., Iwai T., Arai Y. Solubility of Pu and rare-earths in LiCl–Li2O melt // Radiochim. Acta. 2009. V. 97. Pp. 183–186.
  8. 8. Korzun I.V., Nikolaeva E.V., Zakiryanova I.D. Thermal analysis of the oxide–chloride systems GdCl3-Gd2O3 and GdCl3-KCl-Gd2O3 // Journal of Thermal Analysis and Calorimetry. 2021. 144. Pp. 1343–1349.
  9. 9. Cui J., Hope G.A. Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7 // Journal of Spectroscopy. 2015. P. 8.
  10. 10. Patent RF na izobretenie № 2836124. Ustanovka dlya issledovaniya opticheskix xara-akteristik rasplavlenny`x sred / Zajkov Yu.P., Vlasov M.I., Cherny`shev S.V.; opubl.: 11.03.2025. Byul. 8. [In Russian]
  11. 11. Kovrov V.A., Mullabaev A.R., Shishkin V.Y., Zaikov Y.P. Solubility of Li2O in an LiCl-KCl melt // Russian metallurgy (Metally). 2018. V. 2018 № 2. С. 169–173.
  12. 12. Sakamura Y. Solubility of Li2O in Molten LiCl-MClx (M = Na, K, Cs, Ca, Sr, or Ba) Binary Systems // Journal of The Electrochemical Society. 2010. 157. 9. Pp. 135–139.
  13. 13. Hayashi H., Minato K. Stability of lanthanide oxides in LiCl–KCl eutectic melt // Journal of Physics and Chemistry of Solids. 2005. 66. Pp. 422–426.
  14. 14. A. Davies et al. Thermodynamics and phase stability of Li8XO6 octalithium ceramic breeder materials (X = Pb, Ce, Ge, Zr, Sn) // J. Phys.: Condens. Matter. 2022. 34. 355701. P. 14.
  15. 15. Johnson K.E., Sandoe J.N. Solvent LiCI-KCl in the nephelauxetic series for trivalent rare earths // Canadian journal of chemistry. 1968. 46. Pp. 3457–3462.
  16. 16. Khokhryakov A.A., Khokhlova A.M. Electronic Absorption Spectra of the Ce3+ Ions in Halide Melts // Radiochemistry. 2003. 45. 6. Pp. 559–561.
  17. 17. Potapov A.M., Salyulev A.B. Electronic absorption spectra of CeCl3 in molten alkali chlorides // Progress in Molten Salt Chemistry: Proceedings from the EUCHEM 2000 Confer-ence on Molten Salts. 2000. 1. Pp. 429–433.
  18. 18. Kim B.Y., Yun J.-I. Optical absorption and fluorescence properties of trivalent lanthanide chlo-rrides in high temperature molten LiCl–KCl eutectic // Journal of Luminescence. 2016. 178. Pp. 331–339.
  19. 19. Choi S., Bae S.-E., Park T.-H. Electrochemical and Spectroscopic Monitoring of Interactions of Oxide Ion with U (III) and Ln (III) (Ln = Nd, Ce, and La) in LiCl-KCl Melts // Journal of The Electrochemical Society. 2017. 164. 8. H.5068–5073.
  20. 20. Greenhaus H.L., Feibush A.M., Gordon L. Ultraviolet Spectrophotometric Determination of Cerium (III) // Analytical Chemistry. 1957. 29. 10. Pp. 1531–1534.
  21. 21. Medalia A.I., Byrne B.J. Spectrophotometric Determination of Cerium (IV) // Analytical Chemistry. 1961. 23. 3. Pp. 453–456.
  22. 22. Barbanel’ Yu.A., Kolin V.V., Kotlin V.P., Lumpov A.A. Coordination chemistry of actinides in molten salts // Journal of Radioanalytical and Nuclear Chemistry. 1990. 143. 1. Pp. 167–179.
  23. 23. Chrissanthopoulos A., Papatheodorou G.N. Temperature dependence of the f-f hypersensitive transitions of Ho3+ and Nd3+ in molten salt solvents and the structure of the LaCl3–KCl melts // Journal of Molecular Structure. 2006. 782. Pp. 130–142.
  24. 24. Barbanel’, Yu.A. Koordinatsionnaya khimiya f-elementov v rasplavakh (Coordination Chemistry of f Elements in Melts). Moscow: Energoatomizdat. 1985. Pp. 143.
  25. 25. Khokhryakov, A.A., Vershinin A.O., Payvin A.S., Lizin A.A. Elektronnye spektry ionov Nd(III) v rasplavlennykh ftorizda shchelochnyx metallov // Rasplavy. 2015. 4. S. 3–11. [In Russian]
  26. 26. Fujii T., Nagai T., Sato N., Shirai O., Yamana H. Electronic absorption spectra of lanthanides in a molten chloride II. Absorption characteristics of neodymium (III) in various molten chlorides // Journal of Alloys and Compounds. 2005. 393. L1–L5.
  27. 27. Photiadis G.M., Borresen B., Papatheodorou G.N. Vibrational modes and structures of lanthanide halide–alkali halide binary melts LnBr-KBr (Ln = La, Nd, Gd) and NdCl3-ACl (A = Li, Na, K, Cs) // J. Chem. Soc., Faraday Trans. 1998. 94. 17. Pp. 2605–2613.
  28. 28. Runowski M., et al. UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides // Dalton Trans. 2020. 49. S. 2129. https://doi.org/10.1039/C9DT04921E
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library