RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

HIGH-TEMPERATURE PASSIVATION OF THE SURFACE OF CANDIDATE MATERIALS FOR LSR BY ADDING O2– TO THE SALT PHASE OF THE HALIDE MELT

PII
10.31857/S0235010622040065-1
DOI
10.31857/S0235010622040065
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
39-47
Abstract
Experiments were carried out to determine the corrosion rate of stainless steel AISI 316 in a fluoride melt with different concentrations of O2– (by adding lithium oxide to the melt in the concentration range from 0 to 5 wt %). The corrosion rate decreases by an order of magnitude at an oxygen anion concentration in the melt from 0.2 to 0.4 wt %, which may indicate the detection of the phenomenon of high-temperature passivation of the material due to the modification of the composition of the fluoride melt and a decrease in its corrosion activity. In addition, the type of intergranular and pitting corrosion typical of stainless steels in fluoride melts, which is the most dangerous from the point of view of the structural reactor material, changes to continuous when lithium oxide is added due to the “healing” of individual corrosion centers with excess oxygen-containing compounds. The formation of a protective layer of the spinel type with a thickness of 1 μm was established.
Keywords
коррозия кандидатные материалы для ЖСР расплав галогенидов щелочных металлов высокотемпературное пассивирование оксиды шпинельного типа
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Комаров В.Е, Смоленский В.В., Афоничкин В.К. Перспективы использования расплавленных солей в радиохимических технологиях // Расплавы. 2000. № 2. С. 59–65.
  2. 2. LeBlanc D. // Nucl. Eng. Des. 2010. 240. P. 1644–1656. https://doi.org/10.101j.nucengdes.2009.12.033
  3. 3. Khokhlov V., Ignatiev V., Afonichkin V. Evaluating physical properties of molten salt reactor fluoride mixtures // J. Fluorine Chemistry. 2009. 130. P. 30–37.
  4. 4. Barnes J., Coutts R., Horne T., Thai J. Characterization of molten salts for application in molten salt reactors. PAM Review. 2019.
  5. 5. Magnusson J., Memmott M., Munro T. Review of thermophysical property methods applied to fueled and un-fueled molten salts // Annals of Nuclear Energy. 2020. 146. P. 107608.
  6. 6. Serp J., Allibert M., Benes O. Delpech S., Feynberg O. and other. The molten salt reactor (MSR) in generation IV: overview and perspectives // Prog. Nucl. Energy. 2014. 77. P. 308–319.
  7. 7. Williams D.F. Assessment of candidate molten salt coolants for the advanced highi-temperature reactor (AHTR), 2006.
  8. 8. Ядерные реакторы. Ч. 3. Материалы для ядерных реакторов. М.: Изд-во иностранной литературы, 1956.
  9. 9. Менли В., Кубс Д., де Ван Д, Дуглас Д., Инуи Х., Пэтриарка П., Роч Т., Скотт Д. Металлургические проблемы, связанные с использованием расплавленных систем фторидов // Ядерное горючее и реакторные материалы. 1959. С. 36–52.
  10. 10. Manly W.D., Adamson G.M., Coobs J.H., DeVan J.H., Douglas D.A., Hoffman E.E., Patriarca P., Aircraft reactor experiment-metallurgical aspects. ORNL-2349, 1957.
  11. 11. Игнатьев В.В., Крюков О.В., Хаперская А.В. и др. Жидкосолевой реактор для замыкания ядерного топливного цикла по всем актиноидам // Атомная энергия. 2018. 125. № 5. С. 251–255.
  12. 12. Young D.J. High Temperature Oxidation and Corrosion of Metals. Elsevier Science, 2016.
  13. 13. Guo S., Zhang J., Wub W., Zhou W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications // Progress in Material Science. 2018. 97. P. 448–487.
  14. 14. Wang Y., Zhang S., Ji X., Wang P., Li W. Material corrosion in molten fluoride salts // Int. J. Electrochem. Sci. 2018. 13. P. 4891–4900.
  15. 15. DeVan J.H., Evans R.B. Corrosion behavior of reactor materials in fluoride salt mixtures. ORNL-TM-328, 1962.
  16. 16. Janz G.J. // Molten Salts Handbook. 1967. P. 383–387. https://doi.org/10.1016/B978-0-12-395642-2.50032-0
  17. 17. Olson L.C., Ambrosek J.W., Sridharan K., Anderson M.H., Allen T.R. Materials corrosion in molten LiF–NaF–KF salt // J. Fluorine Chem. 2009. 130. P. 67–73.
  18. 18. Kelleher B.C., Dolan K.P., Brooks P., Anderson M.H., Sridharan K. // J. Nucl. Eng. Radiat. Sci. 2015. 1. № 4. P. 041010. https://doi.org/10.1115/1.4030963
  19. 19. Zheng G., Kelleher B., Cao G., Anderson M., Allen T., Sridharan K. // J. Nucl. Mater. 2015. 46. P. 143–150. https://doi.org/10.1016/j.jnucmat.2015.03.004
  20. 20. Yang X., Zhang D., Liu M., Feng S. and other // Corrosion Sci. 2016. 109. P. 62–67. https://doi.org/10.1016/j.corsci.2016.03.029
  21. 21. De Van J.H. Effect of alloying additions of corrosion behavior of nickel-molybdenum alloys in fused fluoride mixtures. ORNL TM-2021, 1969.
  22. 22. Ozeryanaya I.N. Corrosion of metals by molten-salts in heat-treatment processes // Met. Sci. Heat Treat. 1985. 27. № 3–4. P. 184–188.
  23. 23. Fabre S., Cabet C., Cassayre L., Chamelot P., Delepech S., Finne J., Massot L., Noel D. Use of electrochemical techniques to study the corrosion of metals in model fluoride melts // J. Nucl. Mater. 2013. 441. P. 583–591.
  24. 24. Delpech S., Cabet C., Slim C., Picard G.S. Molten fluorides for nuclear applications // Mater. Today. 2010. 13. № 12. P. 34–41.
  25. 25. Raiman S.S., Lee S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts // J. Nuclear Materials. 2018. 511. P. 523–535.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library