RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

THE GLASS-FORMING ABILITY IMPROVEMENT OF Co41Fe7Cr15Mo14C15B6 ALLOY DURING DILUTION WITH RARE EARTH METALS

PII
10.31857/S0235010623010036-1
DOI
10.31857/S0235010623010036
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
14-21
Abstract
Eutectic alloys, due to their low melting point, are promising materials for the production of metal glasses. Unlike crystalline alloys, amorphous alloys have no long-range order, which leads to an increase in hardness, mechanical strength, corrosion resistance and magnetic permeability. The main criterion for the application of amorphous materials in practice, under which the formation of a single-phase metallic glass during quenching, is the critical diameter. Therefore, an urgent task in this area of research is to increase the critical diameter of current amorphous alloys. One of the methods of improving the glass-forming ability of alloys is their dilution with more refractory metals. In this paper, we present amorphous metallic glasses of (Co41Fe7Cr15Mo14C15B6)100 – xRx alloys with dilution with rare earth metals (R = Gd, Ho, La, Nd, Y, Yb; x = 0; 2). The critical diameter, phase and elemental composition of the alloys depending on the quenching rate were determined by X-ray diffraction and scanning electron microscopy. It is shown that the addition of 2 at. % Gd, Ho and Y significantly increases the glass-forming ability of the Co–Fe–Cr–Mo–C–B alloy. By spinning method, when quenched on an aluminum disk rotating at a linear speed of 11.5 m/s, tapes with a thickness of 19 to 73 microns were obtained. Rare inclusions with a high content of rare earth elements up to 35 at % were found on the surface of the tapes, which can act as crystallization centers.
Keywords
металлические стекла аморфные сплавы редкоземельные элементы стеклообразующая способность критический диаметр
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Стародубцев Ю.Н. Теория и расчет трансформаторов малой мощности. М.: ИП РадиоСофт, 2005.
  2. 2. Кейлин В.И., Дорощенко Б.Б., Белозеров В.Я., Стародубцев Ю.Н. Жесткий ленточный сердечник. Патент РФ 2 044 796, № 9 300 205/02; заявл. 11.01.1993, опубл. 27.09.1995.
  3. 3. Кейлин В.И., Дорощенко Б.Б., Белозеров В.Я., Стародубцев Ю.Н., Хлопунов С.И. Жесткий ленточный сердечник с высокой магнитной проницаемостью. Патент РФ 2 041 282. № 93 002 058/02; заявл. 11.01.1993; опубл. 09.08.1995.
  4. 4. Кейлин В.И., Белозеров В.Я., Стародубцев Ю.Н. Трансформатор. Патен РФ 2 041 514, № 92 010 326/02; заявл. 07.12.1992; опубл. 09.08.1995.
  5. 5. Jang J., Tsai P., Shiao A., Li T., Chen C., Chu J., Dug J., Chen M., Chang S., Huang W. Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film // Intermetallic. 2015. 65. P. 56–60.
  6. 6. Shen J., Chen Q., Sun J., Fan H., Wang G. Exceptionally high glass-forming ability of an FeCo–CrMoCBY alloy // Applied physics letters. 2005. 86. P. 151907-1–151907-3.
  7. 7. Guo S.F., Chan K.C., Xie S.H., Yu P., Huang Y.J., Zhang H.J. Novel centimeter-size Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater // J. Non-Crystalline Solids. 2013. 369. P. 29–33.
  8. 8. Amiya K., Inoue A. Fe-(Cr,Mo)-(C,B)-Tm bulk metallic glasses with high strength and high glass-forming ability // Materials Transactions. 2006. 47. P. 1615–1618.
  9. 9. Shen B., Kimira H., Inoue A., Mizushima T. Bulk glassy Fe78 – xCoxGa2P12C4B4 alloys with high saturation magnetization and good soft magnetic properties // Materials Transactions. 2001. 42. P. 1052–1055.
  10. 10. Ponnambalam V., Poon S.J., Shiflet G.J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter // J. Mater. Res. 2004. 19. P. 1320–1323.
  11. 11. Wang L., Chao Y. Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in NaCl solution // Materials Letters. 2012. 69. P. 76–78.
  12. 12. Pang S., Zhang T., Asami K., Inoue A. Formation of bulk glassy Fe75 – x – yCrxMoyC15B10 alloys and their corrosion behavior // J. Mater. Res. 2002. 17. P. 701–704.
  13. 13. Duarte M.J., Klemm J., Klemm S.O., Mayrhofer K.J.J., Stratmann M., Borodin S., Romero A.H., Madinehei M., Serrano J., Gerstl S.S.A., Choi P.P., Raabe D., Renner F.U. Element-resolved corrosion analysis of stainless-type glass-forming steels // Science. 2013. 341. P. 372–376.
  14. 14. Стародубцев Ю. Аморфные металлические материалы // Силовая электроника. 2009. № 2. С. 86–89.
  15. 15. Men H., Pang S.J., Zhang T. Thermal stability and microhardness of new Co-based bulk metallic glasses // Materials Science and Engineering A. 2007. 449–451. P. 538–540.
  16. 16. Lotfollahi Z., Garcia-Arribas A., Amirabadizadeh A., Orue I., Kurlyandskaya G.V. Soft magnetic Co-based Co–Fe–B–Si–P bulk metallic glasses with high saturation magnetic flux density of over 1.2 T // J. alloys and compounds. 2020. 843. P. 3–7.
  17. 17. Maddala D.R., Hebert R.J. Sliding wear behavior of Fe50 – xCr15Mo14C15B6Erx (x = 0, 1, 2 at. %) bulk metallic glass // Wear. 2012. 294–295. P. 246–256.
  18. 18. Chen Q., Zhang D., Shen J., Fan H., Sun J. Effect of yttrium on the glass-forming ability of Fe–Cr–Mo–C–B bulk amorphous alloys // J. Alloys and Compounds. 2007. 427. P. 190–193.
  19. 19. Men H., Pang S.J., Zhang T. Effect of Er doping on glass-forming ability of Co50Cr15Mo14C15B6 alloy // J. Mater. Res. 2006. 21. P. 958–961.
  20. 20. Men H., Pang S.J., Li R., Tao Z. Crystallization kinetics of Co48Cr15Mo14C15B6Er2 bulk metallic glass with high thermal stability // Chinese Phys. Lett. 2006. 23. P. 417–419.
  21. 21. Turnbull D. Under what conditions can a glass be formed // Contemp. Phys. 1969. 10. P. 473–488.
  22. 22. Lu Z.P., Tan H., Li Y., Ng S.C. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses // Scripta mater. 2000. 42. P. 667–673.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library