RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

MgO STABILITY IN EUTECTIC Li2CO3–Na2CO3 AND Li2CO3–K2CO3

PII
10.31857/S0235010623010097-1
DOI
10.31857/S0235010623010097
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
59-67
Abstract
Research and technology studies on Molten Carbonate Fuel Cells (MCFC) are being directed at improving their performance in mode of greenhouse gas conversion for chemical energy storage. The changes in gas composition feeding MCFC demand new insulating materials to be found. In the current work, the equilibrium solubility of magnesia ceramics in air in contact with Li2CO3–Na2CO3 and Li2CO3–K2CO3 eutectic mixtures was measured at 600°С. The study shows that magnesia is completely stable in the tested melts for at least more than 270 h. Its solubility was found to increase in Li–K carbonate eutectic. Conclusions about the material stability are based on results of inductively coupled plasma atomic absorption spectroscopy of melts and scanning electron microscopy combined with X-ray diffraction employed to ceramics testing. Magnesia is recommended as an insulating material in electrolysis cells containing Li2CO3–Na2CO3 and Li2CO3–K2CO3 carbonate eutectics for the conversion of the greenhouse gas in chemical energy storage devices operating in air.
Keywords
MgO эвтектика карбонат Li<sub>2</sub>CO<sub>3</sub>–Na<sub>2</sub>CO<sub>3</sub> Li<sub>2</sub>CO<sub>3</sub>–K<sub>2</sub>CO<sub>3</sub>
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Hamad T.A., Agll A.A., Hamad Y.M., Bapat S., Thomas M., Martin K.B., Sheffield J.W. // Case Stud. Therm. Eng. 2013. 1. P. 45–50. https://doi.org/10.1016/j.csite.2013.09.001
  2. 2. Lan R., Tao S. // Sci. Adv. 2016. 2. e1600772. https://doi.org/10.1126/sciadv.1600772
  3. 3. Discepoli G. Cinti G., Desideri U., Penchini D., Proietti S. // Int. J. Greenh. Gas Control. 2012. 9. P. 372–384. https://doi.org/10.1016/j.ijggc.2012.05.002
  4. 4. Carapellucci R., Cipollone R., Battista D.D. // Energy Procedia. 2017. 126. P. 477–484. https://doi.org/10.1016/j.egypro.2017.08.228
  5. 5. Antolini E. // Ceram. Int. 2013. 39. P. 3463–3478. https://doi.org/10.1016/j.ceramint.2012.10.236
  6. 6. Terada S., Higaki K., Nagashima I., Ito Y. // J. Power Sources. 1999. 83. P. 227–230. https://doi.org/10.1016/S0378-7753 (99)00282-7
  7. 7. Celman J.R., Maru H.C. Advances in molten salt chemistry, vol. 4, Mamantov G., Braustein J. Ed., N.Y., Plenum. 1981. P. 159.
  8. 8. Kaplan V., Bendikov T., Feldman Y., Gartsman K., Wachtel E., Lubomirsky I. // J. Power Sources. 2016. 301. P. 271–276. https://doi.org/10.1016/j.jpowsour.2015.09.125
  9. 9. Mizuhata M., Harada Y., Cha G., Bienvenu Béléké A., Deki S. // J. Electrochem. Soc. 2004. 151. № 5. E179–E185. https://doi.org/10.1149/1.1688798
  10. 10. Gao W., Zhou T., Gao Y., Louis B., O’Hare D., Wang Q. // J. Energy Chem. 2017. 26. P. 830–838. https://doi.org/10.1016/j.jechem.2017.06.005
  11. 11. Zhang K., Li X.S., Li W.Z., Rohatgi A., Duan Y., Singh P., Li L., King D.L. // Adv. Mater. Interfaces. 2014. 1. P. 1400030. https://doi.org/10.1002/admi.201400030
  12. 12. Velden P.F. // Trans. Faraday Soc. 1967. 63. P. 175–184. https://doi.org/10.1039/TF9676300175
  13. 13. Zakir’yanova I.D. // J. Applied Spectroscopy. 2018. 85. № 4. P. 611–615. https://doi.org/10.1007/S10812-018-0694-5
  14. 14. Федоров П.П., Ткаченко Е.А., Кузнецов С.В., Воронов В.В., Лаврищев С.В. Получение наночастиц MgO // Неорганические материалы. 2007. 43. № 5. С. 574–576.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library