RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

ANODIC PROCESSES OF URANIUM ALLOYS CONTAINING PALLADIUM AND NEODYMIUM IN 3LiCl–2KCl-UCl3 MELTS

PII
10.31857/S0235010623020081-1
DOI
10.31857/S0235010623020081
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
144-155
Abstract
At the reprocessing module of the pilot demonstration power complex site of the Siberian Chemical Combine, a combined technological scheme for the reprocessing of mixed nitride uranium-plutonium spent fuel consisting of pyrochemical operations, hydrometallurgical refining of uranium, plutonium and neptunium is implemented step by step. According to this scheme, the target pyrochemical reprocessing products, purified from the main mass of fission products with actinoid content not less than 99.9%, are sent for hydrometallurgical reprocessing. For pyrochemical reprocessing it is necessary to develop a technology of electrorefining of metallised spent nuclear fuel. To carry out electrolytic refining it is necessary to define processes and regimes of anodic dissolution of alloys simulating product of this head operation “metallization”. In the present work the results of investigations of processes of anodic dissolution of U–Pd and U–Pd–Nd model alloys with different concentrations of palladium and neodymium in melts based on 3LiCl–2KCl–UCl3 (10.1 wt % UCl3) at 550°C using different methods are presented. Uranium alloys containing palladium and neodymium were prepared by direct alloying of uranium metal and palladium metal powders of PdAP-1 grade, and neodymium metal (99.99%) in high-purity argon medium (99.998%). Electrochemical measurements were performed using an Autolab 302N potentiostat/halvanostat equipped with a Booster 20A high-current module. The anodic polarisation curves consist of only one oxidation wave which was attributed to the dissolution of uranium metal. Increasing the palladium content in the alloy from 1.5 to 10.0 wt %, does not affect the shape of the polarisation curves. The increase of neodymium content in the alloy from 1.0 to 10.0 wt % also does not affect the shape of polarization curves. Electrorefining parameters of uranium alloys containing palladium and neodymium were determined. The limiting current density of uranium evolution from uranium alloys containing palladium and neodymium in the electrolyte 3LiCl–2KCl–UCl3 (10.1 wt % UCl3) at 550°C was 0.4 A/cm2. It was shown that palladium does not diffuse into the melt as a result of anodic dissolution and neodymium accumulates in the electrolyte only when the alloy is refined with 10.0 wt % neodymium, which is much higher than the future real concentrations of electrotreated uranium alloy components in the technological chain of spent nuclear fuel processing.
Keywords
анодное растворение урановые сплавы поляризация гальваностатическое растворение переработка ОЯТ электрорафинирование
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Imoto S. Chemical state of fission products in irradiated UO2 // Nuclear Materials. 1986. 140. № 1. P. 19–27.
  2. 2. Bush R.P., Recovery of platinum group metals from high levelradioactive waste. Possibilities of separation and use re-evaluated // Platinum Metals Reviews. 1991. 35. № 4. P. 202–208.
  3. 3. Любимов Д.Ю., Дерябин И.А., Булатов Г.С., Гедговд К.Н., Термодинамическое моделирование фазового состава смешанного уранплутониевого мононитрида с примесью кислорода при облучении до выгорания 140 ГВт сут/т и температуре 900—1400 K // Атомная энергия. 2015. 118. № 1. С. 24–19.
  4. 4. Булатов Г.С., Гедговд К.Н., Любимов Д.Ю., Термодинамический анализ химического и фазового составов облученного быстрыми нейтронами уран-плутониевого нитрида в зависимости от температуры и выгорания // Материаловедение. 2009. 1. С. 2–7.
  5. 5. Kleykamp H. The chemical state of the fission products in oxide fuels // Nuclear Materials. 1985. 131. № 2–3. P. 221–246.
  6. 6. Middlemas S.C., Craig M.M., Adkins C.A., Lemma F.D., Tolman K.R., Benson M.T., Hin C.J. Effects of intermetallic compounds on the thermophysical properties of uranium–palladium alloys // Alloys and Compounds. 2021.
  7. 7. Prasad R., Dash S., Parida S.C., Singh Z., Venugopal V.J. Gibbs energy of formation of UPd3(s) // Nuclear Materials. 2000. 277. № 1. P. 45–48.
  8. 8. Kleykamp H. Highlights of experimental thermodynamics in the field of nuclear fuel development // Nuclear Materials. 2005. 344. № 1–3. P. 1–7.
  9. 9. Cordfunke E.H.P., Muis R.P., Wijbenga G., Burriel R., Zainel H., To M., Westrum. E.F.Jr., Thermodynamics of uranium intermetallic compounds. I. Heat capacity of UPd3 from 5 to 850 K // The Journal of Chemical Thermodynamics. 1988. 20. P. 815–823.
  10. 10. Кесикопулос В.А., Потапов А.М., Дедюхин А.Е., Зайков Ю.П. Изготовление интерметаллида UPd3 и исследование его термодинамических характеристик // Сборник трудов семинара “Электрохимия в распределенной и атомной энергетике”. Нальчик. Ажур. 2022. С. 224–226.
  11. 11. Strepetov K.E., Osipenko A.A., Volkovich V.A. Electrochemical behavior of uranium–palladium alloys in molten eutectic mixture of lithium, potassium and cesium chlorides // AIP Conference Proceedings 2022. 2466. № 1. P. 050033.
  12. 12. Okamoto H. Pd–U (Palladium–Uranium) // Journal of Phase Equilibria. 1992. 13. № 2. P. 222–223.
  13. 13. Parnell D.G., Brett N.H., Haines H.R., Potter P.E. Phase relationships in the ternary system U–Nd–Pd // J. Less Common Metals. 1986. 118. № 1. P. 141–152.
  14. 14. Zolotarev D.A., Nikitin D.I., Polovov I.B. Electrode processes in 3LiCl–2KCl–UCl3 melts: Investigation of temperature and uranium concentration influence // AIP Conference Proceedings 2019. 2174. P. 020276.
  15. 15. Никитин Д.И., Половов И.Б., Щетинский А.В., Дедюхин А.С., Волкович В.А., Ребрин О.И. Процессы анодного растворения сплавов U–Pd в расплавах 3LiCl–2KCl–UCl3 // Сборник трудов семинара “Электрохимия в распределенной и атомной энергетике”. Нальчик. Ажур. 2022. С. 294–297.
  16. 16. Hames A.L., Paulenova A., Willit J.L., Williamson M.A. Phase Equilibria Studies of the LiCl–KCl–UCl3 System // Journal Nuclear Technology. 2018. 203. № 3. P. 272–281.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library