- PII
- 10.31857/S0235010623030027-1
- DOI
- 10.31857/S0235010623030027
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 3
- Pages
- 287-297
- Abstract
- The paper presents experimental data on the thermal conductivity of molten salt mixtures СeCl3–MCl, where M = Li, Na, K, Cs. The concentration of cerium trichloride varies from 0.25 to 0.75 mole percent in 0.25 increments. The initial salts of alkali metal chlorides were certified by DSC. The obtained values of melting temperatures are in good agreement with the literature data. Anhydrous cerium trichloride was obtained from cerium(IV) oxide in 2 stages: preparation of cerium crystalline hydrate and removal of water of crystallization. The measurements were carried out by the stationary method of coaxial cylinders in a nickel device in the temperature range individually selected for each composition. The relative measurement error does not exceed 5%. In this work, the convective and radiative contributions to heat transfer were estimated. The value of the product of Prandtl and Grashof numbers is less than 1000, which confirms the absence of convection. The calculated radiative contribution to heat transfer does not exceed 2.4%. The thermal conductivity of all investigated melts increases with increasing temperature. The concentration dependences of molten mixtures of cerium and alkali metal chlorides were obtained. The thermal conductivity decreases upon passing from Li to Cs, which is due to an increase in the radius of the alkali metal cation and, as a consequence, an increase in the interionic distance.
- Keywords
- теплопроводность трихлорид церия хлорид щелочного металла расплавленная соль метод коаксиальных цилиндров перенос тепла
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 16
References
- 1. Комаров В.Е., Смоленский В.В., Афоничкин В.К. Перспективы использования расплавленных солей в радиохимических технологиях // Расплавы. 2000. № 2. С. 59–65.
- 2. Ogawa T., Igarashi M. Pyrochemical process in advanced nuclear programs – with emphasis on management of long-lived radionuclides, in: M. Gaune-Escard (Ed.) // Advances in Molten Salts. From Structural Aspects to Waste Processing, Begell House Inc., New York, Wallingford, 1999. P. 454–463.
- 3. Inoue T., Sakamura Y., Iizuka M., Kinoshita K., Usami T., Kurata M., Yokoo T. Actinides recycle by pyrometallurgy in nuclear fuel cycle // Molten Salts XIII. Proc of Int. Symp. Electrochemical Society. Proceedings 2002-19. 2002. P. 553–562.
- 4. Uozumi K., Sakamura Y., Kinoshita K., Hijikata T., Inoue T., Koyama T. Development of pyropartitioning process to recover minor actinide elements from high level liquid waste // Energy Procedia. 2011. 7. P. 437–443.
- 5. Venneri F., Bowman C. Accelerator-driven systems and fast reactors in advanced nuclear fuel cycles // A Comparative Study, Rep. OCDE/NEA. 2002.
- 6. Kormilitsyn, M.V., Bychkov, A.V., and Ishunin, V.S., in Proc. GLOBAL’2003, New Orleans (USA), November 16–20. 2003. P. 782–783.
- 7. Kim G.-Y., Yoon D., Paek S., Kim S.-H., Kim T.-J., Ahn D.-H. A study on the electrochemical deposition behavior of uranium ion in a LiCl–KCl molten salt on solid and liquid electrode // J. Electroanalytical Chemistry. 2012. 682. P. 128–135.
- 8. Marsden K.C., Pesic B. Evaluation of the electrochemical behavior of cecl3 in molten LiCl–KCl eutectic utilizing metallic Ce as an anode // J. The Electrochemical Society. 2011. 159. № 6. F111.
- 9. Смоленский В.В., Новоселова А.В., Бове А.Л. Получение металлического церия высокой чистоты электролизом расплава LiCl–KCl–CeCl3 // Научно-практическая конференция “Перспективы развития металлургии и машиностроения с использованием завершенных фундаментальных исследований и НИОКР”. Екатеринбург. 2020. С. 142–145.
- 10. Jiang K., Shao Y., Smolenski V., Novoselova A., Liu Q., Xu M., Yan Y., Yu J., Zhang M., Wang J. Electrochemical study of reduction Ce(III) ions and production of high purity metallic cerium by electrorefining in fused LiCl–KCl eutectic // J. Electroanalytical Chemistry. 2020. 878. 114691.
- 11. Kim S., Lee S.-H. Electrochemical properties of NdCl3 and CeCl3 in molten LiCl–KCl eutectic salt // Appl. Sci. 2020. 10. 7252.
- 12. Misra M., Raja K.S., Jaques A., Baral S. Effect of addition of multi-component lanthanides to LiCl–KCl eutectic on thermal and electrochemical properties // ECS Transactions. 2010. 33. № 7. P. 351–360.
- 13. Novoselova A.V., Smolenskii V.V. Electrochemical and thermodynamic properties of lanthanides (Nd, Sm, Eu, Tm, Yb) in alkali metal chloride melts // Radiochemistry. 2013. № 3. 55. P. 243–256.
- 14. Yamamura T., Mehmood M., Maekawa H., Sato Y. Electrochemical processing of rare-earth and rare metals by using molten salts // Chemistry for Sustainable Development. 2004. 12. P. 105–111.
- 15. Yoon D., Phongikaroon S. Electrochemical properties and analyses of CeCl3 in LiCl–KCl eutectic salt // J. Electrochemical Society. 2015. 162. № 10. P. 237–243.
- 16. Salyulev A., Potapov A., Khokhlov V., Shishkin V. The electrical conductivity of model melts based on LiCl–KCl, used for the processing of spent nuclear fuel // Electrochimica Acta. 2017. 257. P. 510–515.
- 17. Takagi R., Rycerz L., Gaune-Escard M. Phase equilibrium in the LnCl3–mCl mixtures (Ln = Lanthanide; M = Alkali): Thermodynamics and electrical conductivity of the M3LnCl6 compounds // ECS Proceedings Volumes. 1996. 7. P. 439–467.
- 18. Gong W., Gaune-Escard M., Rycerz L. Thermodynamic assessment of LiCl–NdCl3 and LiCl–PrCl3 quasi-binary systems // J. Alloys Compd. 2005. № 396. P. 92–99.
- 19. Rycerz L., Gaune-Escard M. Mixing enthalpies of TbBr3–MBr liquid mixtures // Z. Nat. A. 2001. № 56. P. 859–864.
- 20. Kapała J., Rutkowska I. Thermodynamic properties of the pseudo-binary CsCl–LnCl3 (Ln = Ce, Pr, Nd) systems // Computer Coupling of Phase Diagrams and Thermochemistry. 2004. 28. P. 275–279.
- 21. Papatheodorou G.N., Kleppa O.J. Thermodynamic studies of binary charge unsymmetrical fused salt systems. Cerium(III) chloride-alkali chloride mixtures // The J. Physical Chemistry. 1974. 78. № 2. P. 178–181.
- 22. Глушко В.П., Гурвич Л.В. и др. Термодинамические свойства индивидуальных веществ. Справочное издание. Л.: Наука, 1982.
- 23. Макарова Л.И., Алой А.С., Ступин Д.Ю. Изучение влияния CsBr на фазовый переход CsCl эманационным методом // Радиохимия. 1969. 11. С. 116–119.
- 24. Arell A., Roiha M., Aaltonen M. Direct determination of the transition energy of CsCl at 470°C // Phys. Kondens. Mater. 1967. № 6. P. 140–144.
- 25. Бухалова Г.А., Мардиросова И.В. Диаграмма состояния двойных систем из метафосфатов и хлоридов щелочных металлов // Журн. неорганической химии. 1967. № 12. С. 2199–2204.
- 26. Вержбицкий Ф.Р., Василевская М.М., Буров Г.В., Смирнов М.В. Исследование температурной зависимости электрических свойств ионных кристаллов высокочастотным бесконтактным методом // Труды института электрохимии, Уральский научный центр АН СССР. 1971. № 17. С. 7–10.
- 27. Ashcroft S.J., Mortimer C.T. The thermal decomposition of lanthanide(III) chloride hydrates // J. Less-Common Melts. 1968. P. 14–17.
- 28. Hong Vu Vu, Sundstrom Johan. The dehydration schemes of rare-earth chlorides // Thermochimica Acta. 1997. 307. P. 37–43.
- 29. Smirnov M.V., Khokhlov V.A., Filatov E.S. Thermal conductivity of molten alkali halides and their mixtures // Electrochimica Acta. 1987. 32. № 7. P. 1019–1026.
- 30. Зигель Р., Хауэлл Дж. Теплообмен излучением. М.: Мир, 1975.
- 31. Лыков А.В. Теория теплопроводности. М.: Госиздат, 1952.
- 32. Осипова В.А. Экспериментальное исследование процессов теплообмена. М.: Энергия, 1968.
- 33. Mellors G.W., Senderoff S. The density and electrical conductance of the molten system cerium– cerium chloride // J. Phys. Chem. 1960. 64. № 3. P. 294–300.
- 34. Потапов А.М. Транспортные свойства расплавленных хлоридов лантанидов и их бинарных смесей с хлоридами щелочных металлов. Дис. … докт. хим. наук.
- 35. Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W. Heat capacity of LaCl3, CeCl3, PrCl3, NdCl3, GdCl3, DyCl3 // J. Alloys Compd. 1996. 235. P. 176–181.
- 36. Tosi M.P. Ordering in metal halide melts // Ann. Rev. Phys. Chem. 1993. 44. P. 173–211.
- 37. Photiadis G.M., Papatheodorou G.N. Vibrational modes and structures of lanthanide halide-alkali halide binary melts: LnBr3–KBr (Ln = La, Nd, Gd) and NdCl3–ACl (A = Li, Na, K, Cs) // J. Chem. Soc. Faraday Trans. 1998. 94. № 17. P. 2605–2613.