RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

LIQUIDUS TEMPERATURE AND DENSITY OF СsBr–KBr–MoBr3 MELTS

PII
10.31857/S0235010623030039-1
DOI
10.31857/S0235010623030039
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
307-315
Abstract
The melting of 60CsBr–40KBr–MoBr3 (mol %) melts was investigated by synchronous thermal analysis and analysis of cooling curves. The concentration dependence of the liquidus temperature of CsBr–KBr–MoBr3 melts was recorded. It was found that increase of the MoBr3 concentration from 0 to 16 wt % leads to increase in the liquidus temperature from 841 to 951 K. It was shown that increase of the MoBr3 concentration from 2 to 16 wt % leads to increase in the relative mass loss of CsBr–KBr–MoBr3 from 3 to 13 wt %. It was found, that MoBr3 crystallizes from CsBr–KBr–MoBr3 melt as a separate phase by X-ray phase analysis. Investigation of density of 60СsBr–40KBr–MoBr3 (mol %) melt was performed by hydrostatic weighing method. It was shown, that increase in the concentration of MoBr3 from 2 to 8 wt % in CsBr–KBr–MoBr3 melts result in to increase of density. The density of the 60CsBr–40KBr–MoBr3 (mol %) melt decreases with temperature. It is shown that the density of melts (60 mol % CsBr–40 mol % KBr)–MoBr3 (0–8 wt %) varies within 2.69–3.20 g/cm3 in the temperature range 871–1071 K.
Keywords
бромид цезия бромид калия бромид молибдена температура ликвидуса плотность термический анализ гидростатическое взвешивание
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Виноградов-Жабров О.Н., Межуев В.А., Потоскаев Г.Г., Калантырь В.И., Курсков В.С., Волков М.Ф., Панов Г.А. Способ получения изделий из молибдена электролизом расплавов. Патент РФ, RU 2124074. опубл. 27.12.1998, приор. 24.11.1997.
  2. 2. Tang H., Du, Y., Li, Y., Wang, M., Wang, H., Yang, Z., Li B., Gao R. Electrochemistry of UBr3 and preparation of dendrite-free uranium in LiBr–KBr–CsBr eutectic melts // J. Nuclear Materials. 2018. 508. P. 403–410.
  3. 3. Chernyshev A., Apisarov A., Shmygalev A., Pershin P., Kosov A., Grishenkova O., Isakov A., Zaikov Yu. Electrodeposition of niobium from the CsBr–KBr–NbBr3 melt // J. Electrochemical Society. 2021. 168. 7. P. 072501.
  4. 4. Барабошкин А.Н. Электрокристаллизация металлов из расплавленных солей. М. Наука. 1976.
  5. 5. Tabernig B., Reheis N. Joining of molybdenum and its application // International Journal of Refractory Metals and Hard Materials. 2010. 28. № 6. P. 728–733.
  6. 6. Минченко В.И., Степанов В.П. Ионные расплавы: упругие и калорические свойства. Екатеринбург, УрО РАН, 2008.
  7. 7. Брауэр Г. Руководство по неорганическому синтезу: В 6-ти томах. Т. 5. М.: Мир. 1985. С. 1509–1865.
  8. 8. Худорожкова А.О., Исаков А.В., Катаев А.А., Редькин А.А., Зайков Ю.П. Плотность расплавов KF–KCl–KI // Расплавы. 2020. № 3. С. 291–301.
  9. 9. Landolt-Börnstein: Thermodynamic Properties of Inorganic Material, Scientific Group Thermodata Europe (SGTE), Springer-Verlag, Berlin-Heidelberg. 1999.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library