RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

SYNTHESIS AND STRUCTURE OF FOUR TiZrVNb AND FIVE-COMPONENT TiZrHfVNb REFRACTORY HIGH-ENTROPY ALLOYS

PII
10.31857/S0235010623050092-1
DOI
10.31857/S0235010623050092
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
454-466
Abstract
High-entropy alloys attract researcher’s attention due to the presence of a set of new properties. The paper considers the factors affecting the structure of high-entropy alloys (HEAs) based on the elements Ti, Zr, Hf, V, and Nb. The structure data of four-component Ti25Zr25V25Nb25 and five-component Ti20Zr20Hf20V20Nb20 alloys, which were obtained under the same melting and cooling conditions in an arc furnace, are presented. The data of the EDX analysis showed that the chemical composition of the alloys corresponded to the nominal one. Analysis of micrographs of the ingots surface allows us to conclude that the applied melting mode led to overheating of the four–component alloy, but not for the five-component one. It was experimentally found that the primary formation of the four-component alloy occurs faster than that of the five-component one, but further remelting under overheating conditions leads to multiphase structure formation. The maximum content of BCC solid solution (98%) in Ti25Zr25V25Nb25 alloy was achieved during the first remelting, another phase was FCC solid solution (2%). The maximum content of BCC solid solution (95%) in Ti20Zr20Hf20V20Nb20 alloy was obtained by repeated remelting, BCC, HCP solid solutions, and the Laves phase were presented in the amount of 3% or less. The crystal lattice parameters of the BCC main phases for the Ti25Zr25V25Nb25 and Ti20Zr20Hf20V20Nb20 alloys were 3.270 and 3.362 Å, respectively. It was established that to obtain refractory HEAs with a single-phase structure it is important both fulfilment of thermodynamic conditions and correct choice of time-temperature conditions of melting and crystallization for each specific alloy composition.
Keywords
высокоэнтропийный сплав ОЦК твердый раствор дуговая плавка структура фазовый состав
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Wu Y.D., Cai Y.H., Wang T. et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties // Materials Letters. 2014. 130. P. 277–280.
  2. 2. Ryltsev R.E., Estemirova S.K., Gaviko V.S. et al. Structural evolution in TiZrHfNb high-entropy alloy // Materialia. 2022. 21. P. 101311.
  3. 3. Uporov S.A., Ryltsev R.E., Sidorov V.A. et al. Pressure effects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy // Intermetallics. 2022. 140. P. 107394.
  4. 4. Shen H., Zhang J., Hu J., et al. A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage // Nanomaterials. 2019. 9. P. 1–9.
  5. 5. Salishchev G.A., Tikhonovsky M.A., Shaysultanov D.G. et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system // J. Alloys Compounds. 2014. 591. P. 11–21.
  6. 6. Упоров С.А., Эстемирова С.Х., Стерхов Е.В. и др. Особенности кристаллизации, структуры и термической стабильности высокоэнтропийных сплавов GdTbDyHoSc и GdTbDyHoY // Расплавы. 2022. 5. С. 443–453.
  7. 7. Gelchinski B.R., Balyakin I.A., Yuryev A.A. et al. High-entropy alloys: properties and prospects of application as protective coatings // Russian Chemical Reviews. 2022. 91. № 6. P. RCR5023.
  8. 8. Shaysultanov D.G., Stepanov N.D., Salishev G.A. et al. Influence of thermal treatment on structure and hardness of high-entropy alloys CoCrFeNiMnVx (x = 0.25, 0.5, 0.75, 1) // The Physics of Metals and Metallography. 2017. 118. № 6. P. 579–590.
  9. 9. Stepanov N., Shaysultanov D., Yurchenko N. et al. Microstructure refinement on the CoCrFeNiMn high entropy alloy under plastic straining // Materials Science Forum. 2017. 879. P. 1853–1858.
  10. 10. Fazakas E., Zadorozhnyy V., Varga L.K. et al. Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys // International J. Refractory Metals and Hard Materials. 2014. 47. P. 131–138.
  11. 11. Senkov O.N., Woodward C.F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy // Materials Science Engeneering A. 2011. 529. P. 311–320.
  12. 12. Senkov O.N., Senkova S.V., Woodward C. et al. Low-density, refractory multi- principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis // Acta Materials 2013. 61. P. 1545–1557.
  13. 13. Gelchinski B.R., Balyakin I.A., Ilinykh N.I. et al. Analysis of the probability of synthesizing high-entropy alloys in the systems Ti–Zr–Hf–V–Nb, Gd–Ti–Zr–Nb–Al, and Zr–Hf–V–Nb–Ni, Physical Mesomechanics. 2021. 24. P. 701–706.
  14. 14. Zhang Y., Zhou Y.J., Lin J.P. et al. Solid-solution phase formation rules for multicomponent alloys // Advanced Engineering Materials. 2008. 10. № 6. P. 534–538.
  15. 15. Zhang Y., Lu Z.P., Ma S.G. et al. Guidelines in Predicting Phase Formation of High-Entropy Alloys // Communications. 2014. 4. №. 12. P. 57–62.
  16. 16. Mityushova Y.A., Gibadullina A.F., Zhilina E.M. et al. hermodynamic extimation of the formation of a high-entropy Al–Nb–Ti–V–Zr // Russian Metallurgy. 2021. № 2. P. 187–191.
  17. 17. Pacheco V., Lindwall G., Karlsson D. et al. Thermal stability of the HfNbTiVZr high-entropy alloy // Inorganic Chemistry. 2019. 58. P. 811–820.
  18. 18. Nygård M.M., Ek G., Karlsson D. et al. Hydrogen storage in high-entropy alloys with varying degree of local lattice strain // International J. Hydrogen Energy. 2019. 44. № 55. P. 29140–29149.
  19. 19. Rogachev A.S. Structure, stability, and properties of high-entropy alloys // Physics of Metals and Metallography. 2020. 121. P. 733–764.
  20. 20. Sleiman S., Huot J. Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy // J. Alloys Compounds. 2021. 861. P. 158615.
  21. 21. Montero J., Ek G., Sahlberg M. et al. Improving the hydrogen cycling properties by Mg addition in Ti–V–Zr–Nb refractory high entropy alloy // Scripta Materialia. 2021. 194. P. 113699.
  22. 22. Hu Y.M., Liu X.D., Guo N.N. et al. Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys // Rare Metals. 2019. 38. P. 840–847.
  23. 23. DIFFRAC. Eva V5. Bruker AXS GmbH, Ostliche. Rheinbruckenstraße 50, D – 76187, Karlsruhe, Germany. 2019.
  24. 24. DIFFRACPlus: TOPAS. Bruker AX. GmbH, Ostliche. Rheinbruckenstraße 50, D – 76187, Karlsruhe, Germany. 2008.
  25. 25. Gates-Rector S., Blanton T. The powder diffraction file: a quality materials characterization database // Powder Diffration. 2019. 34. P. 352–360.
  26. 26. Laugier J., Bochu B. LMGP-Suite of Programs for the interpretation of X-ray Experiments ENSP. Grenoble: Lab. Materiaux genie Physique.
  27. 27. Фришберг И.В., Кватер Л.И. Обменные процессы при кристаллообразовании. Процессы реального кристаллообразования. М.: Наука, 1977. С. 191–211.
  28. 28. Тимофеева В.А. Рост кристаллов из растворов-расплавов. М.: Наука, 1978.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library