- PII
- 10.31857/S0235010623060026-1
- DOI
- 10.31857/S0235010623060026
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 6
- Pages
- 614-623
- Abstract
- Effective viscosity (viscoelasticity) of cesium and boron oxides melts was measured at temperatures 900–1600 K and concentrations 0 ≤ x ≤16 mol % Cs2O by vibration viscosimetry. It was shown that vibration leads to non-Newtonian flow of melts. This means that not only configuration activation energy, the switching energy of bridging oxygen bonds but also the elastic energy of structural units of melts associated with activation energy of viscous flow. Using parameters under conditions of Newtonian and non-Newtonian flow of melts, shear viscosity η', elastic modulus G' and stored viscosity η'' were calculated. It was shown that cesium boron melts in conditions of high shear rates can be considered as liquids with viscous and elastic properties. Glass transition temperature (Tg, K) was measured by DSC, its dependence of content of cesium oxide was plotted and explained.
- Keywords
- цезийборатный расплав эффективная вязкость неньютоновское течение числа Рейнольдса температура стеклования
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Li P.Ch., Ghose A.C., Su G.J. Density of molten boron oxide, rubidium, and cesium borates // Phys. Chem. Glasses. 1960. 1. № 6. P. 198–204.
- 2. Visser T.J.M., Stevels J.M. // J. Non-Cryst. Solids. 1972. 7. № 4. P. 376–394. https://doi.org/10.1016/0022-3093 (72)90272-4
- 3. Соловьев А.Н., Каплун А.Б. Вибрационный метод измерения вязкости жидкостей. Новосибирск: Наука, 1970.
- 4. Штангельмейер С.В. // Заводская лаборатория. 1968. № 6. С. 764.
- 5. Кирсанов Е.А. Неньютоновские жидкости. Техносфера. М. 2016.
- 6. Melchakov S.Yu., Khokhryakov A.A., Samoilova M.A., Ryabov V.V., Yagodin D.A. // Glass Physics and Chemistry. 2022. 48. P. 174–179. https://doi.org/10.1134/S1087659622030063
- 7. Khokhryakov A.A., Melchakov S.Yu., Samoilova M.A., Ryabov V.V. // Inorganic materials. 2022. 58. P. 538–543. https://doi.org/10.1134/S0020168522050053
- 8. Khokhryakov A.A., Samoilova M.A., Ryabov V.V., Vedmid’ L.B., Melchakov S.Yu. // Phys. Chem. Glasses 2023. 49. № 3. P. 239–244. https://doi.org/10.1134/S1087659623600102
- 9. Yiannopolous Y.D., Chryssikos G.D., Kamitsos E.I. Structure and properties of alkaline earth borate glasses // Phys. Chem. Glasses. 2001. 42. P. 164–172.
- 10. Kojima S. // Solids. 2020. № 1. P. 16–30. https://doi.org/10.3390/solids1010003
- 11. Berryman J.R., Feller S.A., Affatigatto M., Kodama M., Meyer B.M., Martin S.W., Borsa F., Kroeker S. // J. Non-Cryst. Solids. 2001. 293–295. P. 483–489. https://doi.org/10.1016/S0022-3093 (01)00754-2
- 12. Franz H. Effect of water content on density, refractive index and transformation temperature of alkali borate glasses. PPG Industries, Inc., Glass Research Center.
- 13. Осипов А.А., Осипова Л.М., Быков В.Н. Спектроскопия и структура щелочноборатных стекол и расплавов. Екатеринбург–Миасс. УрО РАН, 2009.
- 14. Chryssikos G.D., Kamitsos E.I., Karakassides M.A. Structure of borate glasses: 2. Alkali induced network modifications in terms of structure and properties // Phys. Chem. Glasses. 1990. 31. № 3. P. 109–116.
- 15. Осипов А.А., Осипова Л.М. Структура стекол и расплавов системы Cs2O–B2O3 по данным спектроскопии комбинационного рассеяния света // Физика и химия стекла. 2014. 40. № 4. С. 521–534.
- 16. Shaw R.R., Uhlmann D.R. Subliquidus immiscibility in binary alkali borates // J. Am. Ceram. Soc. 1968. 51. P. 377–382.
- 17. Osipov A.A., Osipova L.M. // Advances in Condensed Matter Physics. 2018. P. 1–8. https://doi.org/10.1155/2018/6746023