RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

POSSIBILITIES OF NEUTRON ACTIVATION ANALYSIS FOR STUDYING THE CORROSION BEHAVIOR OF METALLIC MATERIALS IN MOLTEN SALTS

PII
10.31857/S0235010623060038-1
DOI
10.31857/S0235010623060038
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
644-651
Abstract
For the BREST-OD-300 reactor facility [1, 2], the technology for evaluating mixed nitride uranium-plutonium spent economical fuel is being determined [3–9]. To separate MNUP SNF from fuel claddings made of materials with high radiation resistance – ferritic-martensitic steel EP-823 [10–16], it is planned to use pyrometallurgical grades of “soft chlorination” [17]. When alloying and impurity elements of steel EP-823 are dissolved in molten salts of eutectic composition based on lithium and potassium chlorides, the melt will be contaminated. For the same reason, the formation of volatile compounds will occur, with their further mass transfer from hot to cold sections of process equipment. When studying the corrosion behavior of metals and alloys in liquid media, the problem often arises of determining small amounts of dissolution products in solution. This problem arises, for example, the rate of dissolution of microimpurities. The sensitivity of the usual, traditional methods used in corrosion testing such as mass loss or colorimetric determination of corrosion products in solution is often insufficient to make appropriate measurements. In these cases, the most effective is the use of the radiochemical method of neutron activation analysis based on. qualitative and quantitative determination of chemical elements, based on the measurement of the radiation characteristics of radionuclides formed during the irradiation of materials with neutrons. This paper presents the results of a study of the corrosion behavior and mass transfer of corrosion products of EP-823 steel pre-irradiated in the IVV-2M research nuclear reactor in molten salts 2KCl–3LiCl and 2KCl–3LiCl–PbCl2 at temperatures of 500 and 650°C for 24 h. It is shown that the method of neutron activation analysis can be used to study the corrosion behavior of EP-823 steel in molten salts of various compositions.
Keywords
коррозия сталь ЭП-823 расплав галогенидов щелочных металлов
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Orlov V.V., Filin A.I., Lopatkin A.V. The closed on-site fuel cycle of the BREST reactors // Progressin Nuclear Energy. 2001. 47. № 1–4. P. 171–175.
  2. 2. Dragunov Y.G., Lemekhov V.V., Smirnov V.S. // Atomic Energy. 2012. 113. № 1. P. 70–77. https://doi.org/10.1007/s10512-012-9597-3
  3. 3. Salyulev A., Potapov A., Khokhlov V., Shishkin V. The electrical conductivity of model melts based onLiCl-KCl, used for the processing of spent nuclear fuel // Electrochim. Acta. 2017. 257. P. 510–515.
  4. 4. Zhitkov A., Potapov A., Karimov K., Shishkin V., Dedyukhin A., Zaykov Y. // Nuclear Engineering and Technology. 2022. 52. P. 123–134. https://doi.org/10.1016/j.net.2019.07.006
  5. 5. Salyulev A., Potapov A. // J. Chem. Eng. Data. 2021. 66. № 12. P. 4563–4571. https://doi.org/10.1021/acs.jced.1c00591
  6. 6. Salyulev A.B., Shishkin A.V., Shishkin V.Yu., Zaikov Yu.P. // Atomic Energy. 2019. 126. P. 226–229. https://doi.org/10.1007/s10512-019-00541-1
  7. 7. Zaikov Yu.P., Shishkin V.Yu., Potapov A.M., Dedyukhin A.E., Kovrov V.A., Kholkina A.S., Volkovich V.A., Polovov I.B. // J. Phys.: Conf. Series. 2020. 1475. P. 012027. https://doi.org/10.1088/1742-6596/1475/1/012027
  8. 8. Adamov E.O., Mochalov Yu.S., Rachkov V.I., Khomyakov Yu.S., Shadrin A.Yu., Kascheev V.A., Khaperskaya A.V. // Atomic Energy. 2021. 130. № 1. P. 29–35.
  9. 9. https://doi.org/10.1007/s10512-021-00769-w
  10. 10. Zherebtsov A.A., Mochalov Yu.S., Shadrin A.Yu., Zaikov Yu.P., Gorbachev M.K., Sokolov K.A., Kisly V.A., Goncharov D.A. // J. Phys.: Conf. Series. 2020. 1475. P. 012007. https://doi.org/10.1088/1742-6596/1475/1/012007
  11. 11. Klueh R.L., Kai J.J., Alexander D.J. Microstructure-mechanical properties correlation of irradiated conventional and reduced-activation martensitic steels // J. Nucl. Mater. 1995. 225. P. 175–186.
  12. 12. Kai J.J., Klueh R.L. Microstructural analysis of neutron-irradiated martensitic steels // J. Nucl. Mater. 1996. 230. P. 116–123.
  13. 13. Schaeublin R., Gelles D., Victoria M. Microstructure of irradiated ferritic/martensitic steels in relation to mechanical properties // J. Nucl. Mater. 2002. 307–311. P. 197–202.
  14. 14. Mathon M.H. Carlan Y., Geoffroy G., Averty X., Alamo A., Novion C.H. A SANS investigation of the irradiation-enhanced α–α׳ phases separation in 7–12 Cr martensitic steels // J. of Nucl. Mater. 2003. 312. P. 236–248.
  15. 15. Porollo S.I., Dvoriashin A.M., Konobeev Yu.V., Garner F.A. Microstructure and mechanical properties of ferritic/martensitic steel EP-823 after neutron irradiation to high doses in BOR-60 // J. of Nucl. Mater. 2004. 329–333. P. 314–318.
  16. 16. Dvoriashin A.M. Porollo S.I., Konobeev Yu.V., Garner F.A. Influence of high dose neutron irradiation on microstructure of EP-450 ferritic–martensitic steel irradiated in three Russian fast reactors // J. Nucl. Mater. 2004. 329–333. P. 319–323.
  17. 17. Gorynin I.V., Karzov G.P., Markov V.G. Structural materials for nuclear reactors with lead-based liquid metal coolants. Radiation materials science and structural strength of reactor materials. St. Petersburg: Publishing House of TsNIIKM “Prometheus”, 2002.
  18. 18. Шадрин А.Ю., Волк В.И., Полуэктов П.П., Кормилицын М.В. Обращение с ОЯТ быстрых реакторов, использующих плотное топливо // Безопасность ядерных технологий и окружающей среды. 2012. № 1. С. 78–81.
  19. 19. Голосов О.А., Николкин В.Н., Бахтина Е.А. Модель коррозии сталей в свинце // Инновационные проекты и технологии ядерной энергетики: сб. докладов IV международной научно-технической конференции. 2016. 1. С. 350–362.
  20. 20. Гума В.И., Демидов А.М., Иванов В.А., Миллер В.В. Нейтронно-активационный анализ. М.: Энергоатомиздат, 1984.
  21. 21. Бланков Е.Б., Бланкова Т.Н., Русяев В.Г., Якубсон К.И. Нейтронно-активационный анализ в геологии и геофизике. М.: Наука, 1972.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library