RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

TWO TYPES OF GALLIUM EXPOSURE TO ALUMINUM

PII
10.31857/S0235010623060075-1
DOI
10.31857/S0235010623060075
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
624-633
Abstract
The effect of gallium on aluminum during their fusion is investigated. The corrosion rate of aluminum alloys with 1, 2 and 5 at % gallium content was experimentally determined, which was 0.001, 0.00101 and 0.00062 g/m2 · h, respectively, which is less than that of pure grade A99 aluminum – 0.0016 g/m2 · h. The rate of dissolution of these alloys in acidic and alkaline media is determined. X-ray phase analysis showed the homogeneity of the alloys under consideration. The morphology of aluminum alloys with gallium was studied, after exposure to an aggressive environment – a solution of hydrochloric acid. The possibility of obtaining hydrogen and nanoscale alumina by decomposition of water by activated gallium aluminum alloy is shown. Activation of the aluminum surface by gallium alloy occurs according to the Rebinder effect and the article presents a micrograph of the surface of aluminum treated with Ga-Sn alloy, clearly demonstrating this effect. When using metallic gallium in contact with aluminum, the interaction requires heating to a temperature above 30°C (the melting point of gallium is 29.7°C), the melting point of the eutectic composition 92Ga–8Sn is 20.0°C, which allows the interaction to begin at room temperature. At temperatures of about 4°C, activated aluminum can be stored for a long time. The quality of hydrogen obtained by decomposition of water should be higher than that obtained by cracking, and the cost is close to a well-developed technology of electrolysis of water and no more than 2 times the cost of its synthesis via cracking of hydrocarbons. Gallium and its liquid alloys are non-toxic, almost do not interact with water, activate aluminum, preventing the formation of a protective oxide film, penetrate into the intergranular space and aluminum easily interacts with water, forming hydrogen and aluminum hydroxide.
Keywords
алюминий водород галлий сплав коррозия активация
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Meroueh L., Eagar T.W., Hart D.P. // ACS Applied Energy Materials. 2020. 3. № 2. P. 1860–1868. https://doi.org/10.1021/ACSAEM.9B02300
  2. 2. Meroueh L., Neil L., Eagar T.W., Hart D.P. // ACS Applied Energy Materials. 2021. 4. № 1. P. 275–285. https://doi.org/10.1021/acsaem.0c02175
  3. 3. Virendrakumar G., Deonikar, Hern Kim. // Applied Surface Science. 2022. 578. P. 152054. https://doi.org/10.1016/j.apsusc.2021.152054
  4. 4. Gabriella Amberchan, Isai Lopez, Beatriz Ehlke et al. // ACS Applied Nano Materials. 2022. 5. № 2. P. 2636–2643. https://doi.org/10.1021/acsanm.1c04331
  5. 5. Sheng P., Zhang S., Yang J., Guan C., Li J., Liu M., Pan W., Wang Y. // International Journal of Energy Research. 2021. 45. № 6. P. 9627–9637. https://doi.org/10.1002/er.6486
  6. 6. Яценко С.П., Скрябнева Л.М., Шевченко В.Г. Способ получения водорода и химический реактор для его осуществления. Пат. 2397141 РФ. МПК С01В 3/08, В01J 7/00. Опубл. 20.08.2010, Бюл. № 23.
  7. 7. Яценко С.П., Скачков В.М., Шевченко В.Г. Получение водорода разложением воды активированным алюминием // Журн. прикладной химии. 2011. 84. № 1. С. 35–38.
  8. 8. Stojic D.L., Marceta M.P., Sovilj S.P., Miljanic S.V.S. // J. Power Sources. 2003. 118. № 12. P. 315–319. https://doi.org/10.1016/S0378-7753 (03)00077-6
  9. 9. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1–47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2/ (дата обращения 25.05.2021).
  10. 10. Филатов А.А., Суздальцев А.В., Молчанова Н.Г., Панкратов А.А., Зайков Ю.П., Останина Т.Н. Коррозионное поведение сплавов и лигатур Al–Zr в растворе NaСl // Бутлеровские сообщения. 2018. 55. № 8. С. 109–115.
  11. 11. Исследование влияния примесей, сопутствующих алюминию при его получении, на технологические свойства слитков из алюминия, деформируемых сплавов и регламентация содержания галлия, лития, кальция и скандия в алюминиевых сплавах. НИР. Шифр работы: 1139-020. ВНТИЦ. 1987. Инв. № 59 955 (рег. № 0285. 0 079282).
  12. 12. Малкин А.И. Закономерности и механизмы эффекта Ребиндера // Коллоидный Журн. 2012. 74. № 2. С. 239–256.
  13. 13. Яценко С.П., Пасечник Л.А., Скачков В.М., Рубинштейн Г.М. Галлий: Технологии получения и применение жидких сплавов: Монография. М.: РАН, 2020.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library