RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

In the LiCl-KCl melt at 500оС depending on the content of Li2О и LiOH

PII
10.31857/S0235010624030088-1
DOI
10.31857/S0235010624030088
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
319-330
Abstract
Molten alkali metal chlorides used in pyrotechnologies are aggressive corrosive agents. The high operating temperature of the process, the heterogeneity of the environment, and the significant corrosion activity of the molten salt necessitate both the search for stable structural materials and the development of methods for protecting the structural elements of high-temperature technological devices. Corrosion loss reduction techniques traditionally used in low temperature environments are not applicable at high temperatures. The article examines the influence of oxygen-containing impurities (lithium oxide and hydroxide) on the corrosion behavior of metallic nickel (grade NP1) – the main component of candidate structural alloys, a thermodynamically and structurally stable material in the melt for the process of electrolytic refining of spent nuclear fuel. A method for preparing the LiCl–KCl salt electrolyte and obtaining lithium oxide by thermal decomposition of anhydrous lithium hydroxide under vacuum is described, and the concentrations of impurities in the electrolyte and the synthesized lithium oxide are determined. An installation for conducting corrosion tests in an inert atmosphere of a glove box is presented. To assess the corrosion resistance of the material, the following were used: gravimetric analysis, X-ray diffraction analysis of the surface and cross-sectional sections, and X-ray diffraction analysis of the surface of the samples. The dependences of the corrosion rate of the material on the concentration of oxygen-containing additives Li2O and LiOH were obtained. Based on a combination of gravimetric, X-ray microspectral and X-ray phase analysis data, it was established that metallic nickel samples demonstrate high corrosion resistance in the studied melts with the introduction of Li2O and LiOH additives.
Keywords
коррозия никель хлоридный расплав LiCl–KCl кислородсодержащие добавки
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Никитина Е.В., Ткачева О.Ю., Карфидов Э.А., Руденко А.В., Муллабаев А.Р. Высокотемпературная коррозия в расплавленных солях: уч. пособие. Изд-во Урал. ун-та, 2021.
  2. 2. ГОСТ 492-2006. Никель, сплавы никелевые и медно-никелевые, обрабатываемые давлением. Марки. М.: Стандартинформ, 2008.
  3. 3. ГОСТ 52381-2005. Материалы абразивные. Зернистость и зерновой состав шлифовальных порошков. Контроль зернового состава. М.: Стандартинформ, 2020.
  4. 4. Муллабаев А.Р. Анодные процессы в расплавах LiCl-KCl-Li2O: автореф. дис. ... канд. хим. наук: 2.6.9. Екатеринбург, 2022.
  5. 5. Ерженков М.В., Борисов Г.В., Зайков Ю.П., Никитина Е.В., Дедюхин А.Е., Карфидов Э.А. Установка для определения скорости коррозии материалов в расплавленных солях. Патент РФ № 2758772. Заявл. 29.03.2021; опубл. 01.11.2021.
  6. 6. Пфанн В. Зонная плавка. М.: Мир, 1970.
  7. 7. Шишкин В.Ю., Митяев В.С. Очистка галогенидов щелочных металлов методом зонной плавки // Изв. АН СССР. Неорган. материалы. 1982. 18. № 11. C. 1917–1918.
  8. 8. Raiman S.S., Lee S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts // Journal of Nuclear Materials. 2018. 511. P. 523–535.
  9. 9. Sridharan K., Allen T.R. Corrosion in molten salts // Molten Salts Chemistry. 2013. P. 241–267.
  10. 10. Indacochea J.E., Smith J.L., Litko K.R., Karell E.J., Raraz A.G. High-temperature oxidation and corrosion of structural materials in molten chlorides // Oxid. Met. 2001. 55. P. 1–16.
  11. 11. Shankar A.R., Thyagarajan K., Mudali U.K. Ravi corrosion behavior of candidate materials in molten LiCl-KCl salt under argon atmosphere // Corrosion. 2013. 69. № 7. P. 655–665.
  12. 12. Karfidov E.A., Zaikov Y.P., Nikitina E.V., Seliverstov K.E., Dub A.V. High-temperature passivation of the surface of candidate materials for MSR by adding oxygen ions to FLiNaK salt // Materials. 2022. 15. P. 5174.
  13. 13. Никитина Е.В., Карфидов Э.А., Селиверстов К.Е. Исследование коррозионного поведения никеля и его сплавов NiTi, NiCr в расплаве LiCl-KCl с добавлением 1 и 5% CeCl3 и Li2O // Инновационные материалы и технологии: материалы Междунар. научно-технич. конф. молодых ученых. Минск. 2022. С. 558.
  14. 14. Feng X.K., Melendres C.A. Anodic corrosion and passivation behavior of some metals in molten LiCl–KCl containing oxide ions // J. Electrochem. Soc. 1982. 129. Р. 1245–1249.
  15. 15. Ambrosek J. Molten chloride salts for heat transfer in nuclear systems // University of Wisconsin. 2011. P. 238.
  16. 16. Du X., Guo Sh., Wang Sh. Mechanism of tellurium induced nickel alloy corrosion in molten LiCl-KCl salt // Corrosion Science. 2022. P. 209.
  17. 17. Young D.J. High temperature oxidation and corrosion of metal // Elsevier Science. 2016. P. 758.
  18. 18. Озеряная И.Н. Коррозия металлов в расплавленных солях при термической обработке // Металловедение и термическая обработка металлов. 1985. 3. С. 14–17.
  19. 19. Guo Sh., Zhang J., Wu W., Zhou W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications // Progress in Materials Science. 2018. 97. P. 448–487.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library