RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Stationary and pulsed electrodeposition of silicon in LiCl–KCl–CsCl–K2SiF6 melt

PII
10.31857/S0235010624040036-1
DOI
10.31857/S0235010624040036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
377-390
Abstract
Silicon and its materials are widely used in metallurgy, micro- and nano-electronics, solar energy, and are also promising materials for anodes of lithium-ion power sources with increased specific capacity. The expansion of application areas of silicon with controlled morphology necessitates the development of new energy–efficient methods of its production. In the present work, the influence of the mode as well as parameters of electrolysis of the LiCl–KCl–CsCl–K2SiF6 melt with a temperature of 545 оC on the morphology of electrolytic precipitation of silicon on glassy carbon has been studied. The galvanostatic mode of electrodeposition, widely used in industry, as well as the pulsed mode, which is actively investigated at present, were used for the electrolysis. Silicon electrodeposition was carried out by varying such parameters as cathodic current density (from 3 to 50 mA/cm2) and electrolysis duration (from 30 to 180 min) in the galvanostatic mode, as well as by varying the density and duration of the cathodic current pulse, the duration of current pauses and the total duration of electrolysis in the pulsed mode. It is shown that electrodeposition of silicon on glassy carbon is accompanied by the formation of a continuous sediments of hemispherical nuclei with a diameter of about 1 micron on the electrode surface. An increase in the cathodic current density and an increase in the cathodic current pulse pause frequency contribute to the disruption of the sediment continuity and the growth of dendrites of ordered or arbitrary shape. At the same time, the pulsed mode allows to increase the cathode current density at silicon electrodeposition (from 25–30 to 250–500 mA/cm2) and stabilize the value of the cathode potential during electrolysis.
Keywords
кремний электроосаждение расплавленные хлориды гальваностатический электролиз импульсный электролиз морфология
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Кулова Т.Л. Новые электродные материалы для литий-ионных аккумуляторов (Обзор) // Электрохимия. 2013. 49. № 1. С. 1–25.
  2. 2. Чемезов О.В., Исаков А.В., Аписаров А.П., Брежестовский М.С., Бушкова О.В., Баталов Н.Н., Зайков Ю.П., Шашкин А.П. Электролитическое получение нановолокон кремния из расплава KCl–KF–K2SiF6–SiO2 для композиционных анодов литий-ионных аккумуляторов // Электрохимическая энергетика. 2013. 13. 4. С. 201–204.
  3. 3. Суздальцев А.В., Гевел Т.А., Парасотченко Ю.А., Павленко О.Б. Краткий обзор результатов использования электроосажденного кремния для устройств преобразования и накопления энергии // Расплавы. 2023. № 1. С. 99–108.
  4. 4. Cohen U. Some prospective applications of silicon electrodeposition from molten fluorides to solar cell fabrication // J. Electron. Mater. 1977. 6. Р. 607–643.
  5. 5. Boen R., Bouteillon J. The electrodeposition of silicon in fluoride melts // J. Appl. Electrochem. 1983. 13. 277.
  6. 6. Зайков Ю.П., Жук С.И., Исаков А.В., Гришенкова О.В., Исаев В.А. Электроосаждение кремния из расплава KF–KCl–KI–K2SiF6 // Расплавы. 2016. № 5. С. 441–454.
  7. 7. Кузнецова С.В., Долматов B.C., Кузнецов С.А. Вольтамперометрическое исследование электровосстановления комплексов кремния в хлоридно-фторидном расплаве // Электрохимия 2009. 45. С. 797–803.
  8. 8. Жук С.И., Гевел Т.А., Зайков Ю.П. Влияние материала подложки на кинетику и механизм электроосаждения кремния из расплава KCl–KF–K2SiF6 // Расплавы. 2021. № 4. С. 354–364.
  9. 9. Yasuda K., Kato T., Norikawa Yu., Nohira T. Silicon electrodeposition in a water-soluble KF–KCl molten salt: Properties of Si films on graphite substrates // J. Electrochem. Soc. 2021. 168. 112502.
  10. 10. Гевел Т.А., Горшков Л.В., Суздальцев А.В., Зайков Ю.П. Влияние материала катода на кинетику электровосстановления ионов кремния в расплаве KCl–CsCl–K2SiF6 // Расплавы. 2023. № 5. С. 491–501.
  11. 11. Николаев А.Ю., Муллабаев А.Р., Суздальцев А.В., Ковров В.А., Холкина А.С., Шишкин В.Ю., Зайков Ю.П. Очистка хлоридов щелочных металлов методом зонной перекристаллизации для использования в операциях пирохимической переработки отработавшего ядерного топлива // Атомная энергия 2021. 131. № 4. С. 199–205.
  12. 12. Новоселова А.В., Смоленский В.В., Бове А.Л. Электрохимический синтез интерметаллических соединений U–Ga и U–Cd в расплавленной эвтектике LiCl–KCl–CsCl // Расплавы. 2023. № 5. С. 443–453.
  13. 13. Xu X., Zhuo W., Zhang X., Zhu Ch., Wang Ch., Ding Y., Guo Sh., Zhou W., Wang Y. Investigation of electrochemical characteristics and nucleation mechanism of cerium influenced by F− in LiCl–KCl–CsCl melts // J. Mol. Liquids 2024. 400. 124582.
  14. 14. Liu Y., Liu Y., Wang L., Jiang Sh., Wang D., Liu Z., Li M., Shi W. Electrochemical behaviors and extraction of Ln(III) (Ln = La, Ce, Nd) ions in LiCl–KCl–CsCl eutectic salts at low temperatures // ACS Sust. Chem. Eng. 2023. 11. Р. 8161–8172.
  15. 15. Pavlenko O.B., Ustinova Yu.A., Zhuk S.I., Suzdaltsev A.V., Zaikov Yu.P. Silicon electrodeposition from low-melting LiCl–KCl–CsCl melts // Rus. Met. (Metally). 2022. № 8. Р. 818–824.
  16. 16. Parasotchenko Yu., Pavlenko O., Suzdaltsev A., Zaikov Yu. Study of the silicon electrochemical nucleation in LiCl–KCl–CsCl–K2SiF6 melt // J. Electrochem. Soc. 2023. 170. 022505.
  17. 17. Wei R., Huang Zh., Wei T., Wang Zh., Jiao Sh., Review—Preparation of hafnium metal by electrolysis // J. Electrochem. Soc. 2024. 171. 022501.
  18. 18. Trofimova T.S., Ostanina T.N., Rudoi V.M., Mazurina E.A. The dynamics of the nickel foam formation and its effect on the catalytic properties toward hydrogen evolution reaction // Int. J. Hydrogen Energy 2023. 48. 22389.
  19. 19. Sugisaki M., Matsushima H., Ueda M., Kawamura M. Formation of porous gold electrodeposits by pulse technique in AlCl3–NaCl–KCl molten salt containing AuCl // Electrochemistry. 2023. 92. 043005.
  20. 20. Pavlenko O.B., Suzdaltsev A.V., Parasotchenko Yu.A., Zaikov Yu.P. Electrochemical synthesis and characterization of silicon thin films for energy conversion // Silicon 2023. 15. Р. 7765–7770.
  21. 21. Барабошкин А.Н. Электрокристаллизация металлов из расплавленных солей. М.: Наука. 1976.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library