- PII
- 10.31857/S0235010624040084-1
- DOI
- 10.31857/S0235010624040084
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 442-450
- Abstract
- The study of phase diagrams of multicomponent molten mixtures is traditionally carried out either by experimental measurements or thermodynamic calculations based on known experimental data. Atomistic modeling occupies a significantly smaller share in the methodology, and the capabilities of this approach have been poorly studied. In this work, we simulated the dissolution of cerium trifluoride in the ternary eutectic of lithium, sodium, and potassium fluorides using the molecular dynamics method. A time- and ensemble-scale simulation of the coexisting crystalline phase and melt at several temperatures was carried out. The influence of ensemble size was studied. The rate of dissolution was studied depending on temperature. The asymptote of the dependence agrees well with the experimental liquidus temperature for a given composition. A conclusion is given about the possibility of using molecular dynamics to determine the complete solubility of a melt component.
- Keywords
- фазовые диаграммы FLiNaK растворимость трифторид церия молекулярная динамика
- Date of publication
- 01.04.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 56
References
- 1. Magnusson J., Memmott M., Munro T. // Annals of Nuclear Energy. 2020.146. 107608. https://doi.org/10.1016/j.anucene.2020.107608
- 2. Ågren J. // Current Opinion in Solid State & Materials Science 1996. 1. Р. 355–360. https://doi.org/10.1016/s1359-0286 (96)80025-8
- 3. Liu Z-K. // Calphad. 2023. 82. 102580. https://doi.org/10.1016/j.calphad.2023.102580
- 4. Besmann T.M., Schorne-Pinto J. // Thermo. 2021. 1. Р. 168–78. https://doi.org/10.3390/thermo1020012
- 5. Xiong W., Hao L. // Journal of Phase Equilibria and Diffusion. 2022. 43. Р. 894–902. https://doi.org/10.1007/s11669-022-01018-8
- 6. Jayaraman S., Thompson A.P., Von Lilienfeld O.A. // Nonlinear and Soft Matter Physics 2011. 84. https://doi.org/10.1103/physreve.84.030201
- 7. Shah T., Fazel K., Lian J., Huang L., Shi Y., Sundararaman R. // Journal of Chemical Physics 2023. 159. 124502. https://doi.org/10.1063/5.0164824
- 8. Fu D., Zhang C., Wang G., Na H., Wu Y. // Solar Energy Materials & Solar Cells/Solar Energy Materials and Solar Cells. 2024. 273. 112916. https://doi.org/10.1016/j.solmat.2024.112916
- 9. Kobelev M.A., Tatarinov A.S., Zakiryanov D.O., Tkachev N.K. // Phase Transitions 2020. 93. № 5. Р. 504–508. https://doi.org/10.1080/01411594.2020.1758318
- 10. Romatoski R.R., Hu L.W. // Annals of Nuclear Energy. 2017. 109. Р. 635–47. https://doi.org/10.1016/j.anucene.2017.05.036
- 11. Пономарев Л.И., Серегин М.Б., Михаличенко А.А., Паршин А.П., Загорец Л.П. Обоснование выбора имитаторов фторидов актиноидов для исследования растворимости в топливной соли жидкосолевых реакторов // Атомная энергия. 2012. 112. С. 341–346.
- 12. Mushnikov P.N., Tkacheva O.Yu., Kholkina A.S., Zaikov Yu.P., Shishkin V.Yu., Dub A.V. // Atomic Energy. 2022. 131. Р. 263–267. https://doi.org/10.1007/s10512-022-00876-2
- 13. Серегин М.Б., Паршин А.П., Кузнецов А.Ю., Пономарев Л.И., Мельников С.А., Михаличенко А.А., Ржеуцкий А.А., Мануйлов Р.Н. Растворимость UF4, ThF4, CeF3 в расплаве LiF–NaF–KF // Радиохимия. 2011. 53. С. 416–418.
- 14. Zakiryanov D. // Molecular Simulation. 2023. 49. Р. 845–54. https://doi.org/10.1080/08927022.2023.2193656
- 15. Zakiryanov D., Kobelev M., Tkachev N. // Fluid Phase Equilibria. 2020. 506. 112369. https://doi.org/10.1016/j.fluid.2019.112369.
- 16. Haynes W.M., Lide D.R., Bruno T.J., CRC Handbook of Chemistry and Physics, CRC Press, 2014. 781 р.
- 17. Melting points using GNN model. Available at: https://next-gen.materialsproject.org/contribs/contributions/65cfa83c1eaa004f45603e58 (accessed 24.06.24).
- 18. Plimpton S. // Journal of Computational Physics. 1995. 117. Р. 1–19. https://doi.org/10.1006/jcph.1995.1039