RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

Physicochemical properties of Na2SO4-CaSO4 melts

PII
10.31857/S0235010624050066-1
DOI
10.31857/S0235010624050066
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
519-528
Abstract
The aim of the work was to study the properties of melts of the Na2SO4–CaSO4 system, which are best suited for practical application in metallurgy, for example, for improving the operation of industrial furnaces. In addition, information on the properties of this system is of interest for applied chemistry of molten salts, for example, for cleaning gases, metal and ceramic surfaces of structural elements. The properties of melts of binary sulfate systems, necessary for selecting application parameters, have not been studied sufficiently. The most important for practice are density, surface tension and dynamic viscosity. The work uses modern experimental research methods: maximum pressure in an argon bubble blown into the melt through a capillary to determine the density and surface tension, and the vibration method – for dynamic viscosity. The temperature and concentration ranges of measurements were 1050–1200°C and 0–60 mol. %. For the entire studied range of melt compositions, linear dependences of density and surface tension on temperature were obtained. Dynamic viscosity obeys an exponential dependence. As a result of statistical processing of the experimental data, general equations of polytherms of density, surface tension and viscosity were derived. Analysis of the experimental results showed that the values of density, surface tension and viscosity have deviations from additivity, which reflects a change in the structure of sodium sulfate – calcium sulfate melts with an increase in the concentration of CaSO4. Comparison of the obtained experimental data with those already known for binary carbonate melts indicated changes in the structure of the melts, in particular, the formation in the volume, in addition to the Na+ and Ca2+ cations and the SO42- anion, of complex anions [NaSO4]- predominantly on the surface and [Ca(SO4)]n- predominantly in the volume.
Keywords
сульфат натрия сульфат кальция расплав состав температура плотность поверхностное натяжение динамическая вязкость
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Janz G.J., Allen C.B., Bansal N.P., Murphy R.M., Tomkins R. P. T. Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems. NSRDS-NBS 61, Part II. Molten salts data center, Cogswell Laboratory Rensselaer Polytechnic Institute Troy, New York, 1979.
  2. 2. Janz G. Molten salts data as reference standards for density, surface tension, viscosity, and electrical conductance // J. Phys. Chem. Ref. Data. 1980. 9. № 4. Р. 791–830.
  3. 3. Крупнов Л.В., Старых Р.В., Петров А.Ф. Механизм формирования тугоплавкой настыли в печах взвешенной плавки Надеждинского металлургического завода // Цветные металлы. 2013. № 2. С. 46–51.
  4. 4. Серебряный Я.Л. Электроплавка медно-никелевых руд и концентратов. 2-е изд. М.: Металлургия, 1974.
  5. 5. Каунов А.В., Тимофеева А.С. Исследование причин и способов уменьшения образования настылей в шахтной печи металлизации // Успехи современного естествознания. 2011. № 3. С. 64–65.
  6. 6. Физическая энциклопедия. М.: Большая российская энциклопедия, 1998. Т. 5.
  7. 7. Encyclopedia of Chemical Processing and Design: 69 Supplement. Chemical substances, components, reactions, process design. Molten sulfate mixture. New York, 2002.
  8. 8. Freyer D., Voigt W., Kohnke K. The phase diagram of the system Na2SO4–CaSO4 // Eur. J. Solid State Inorg. Chem. 1998. 35. Р. 595–606.
  9. 9. Зайков Ю. П., Ковров В. А., Катаев А. А., Суздальцев А. В., Холкина А. С., Першин П. С. Электрохимия расплавленных солей. Екатеринбург: Изд-во Урал. ун-та, 2014.
  10. 10. Соловьев А.Н., Каплун А.Б. Вибрационный метод измерения вязкости жидкостей. Новосибирск: Наука, 1970.
  11. 11. Укше Е.А. Строение расплавленных солей. М.: Мир, 1966.
  12. 12. Смирнов М.В., Степанов В.П. Поверхностная активность компонентов ионных расплавов. Сб. Физическая химия. Современные проблемы. М.: Химия, 1985.
  13. 13. Катышев С.Ф., Артемов В.В., Десятник В.Н. Плотность и поверхностное натяжение расплавов фторида циркония с фторидами щелочных металлов // Расплавы. 1988. 2. № 6. С. 102–104.
  14. 14. Дариенко С.Е., Катышев С.Ф., Червинский Ю.Ф. Плотность расплавов систем KF-KC1, KF-ZrF4, KF-HfF4, KCl-ZrF4, KCl-HfF4 // Расплавы. 1990. 4. № 1. С. 103–106.
  15. 15. Хохряков А.А., Самойлова М.А., Рябов В.В., Ведмидь Л.Б. Эффективная вязкость и температура стеклования расплавов Cs2O–B2O3 // Расплавы. 2023. № 6. C. 614–623.
  16. 16. Aqra F. Surface tension of molten metal halide salts // J. of Molecular Liquids. 2014. 200. P. 120–121.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library