- PII
- 10.31857/S0235010624060028-1
- DOI
- 10.31857/S0235010624060028
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 6
- Pages
- 596-608
- Abstract
- Oxide tungsten bronzes (OTB) of cubic, tetragonal and hexagonal structure were electrodeposited under galvanostatic conditions. Electrolysis of polytungstate melts 0.8Na2WO4–0.2WO3, 0.25Na2WO4–0.25K2WO4–0.5WO3 and 0.1K2WO4–0.55Li2WO4–0.35WO3 was performed at a temperature of 973 K and a cathode current density of 25 mA cm–2 for 20 min. The synthesized OTB powders were studied by X-ray diffraction analysis, laser diffraction, and scanning electron microscopy coupled with energy dispersive spectroscopy. To determine the upper limit of the thermal stability range, the phase composition of OTB powders with an average particle size of 40–50 μm was studied after isothermal annealing at 373–1173 K for 2 h in an air or argon atmosphere. OTB powders with a tetragonal structure were additionally studied by synchronous thermal analysis. The electrical resistance of the samples sintered at 473 K was measured in air using direct and alternating current. It has been established that the most stable are the hexagonal OTBs isostructural to K0.3WO3, since their phase composition does not change up to 773 K during heat treatment in air and remains constant over the entire studied temperature range in an inert atmosphere. Tetragonal OTB powders isostructural to K0.475WO3 and Na0.28WO3 are stable up to 1073 K in argon and partially oxidize in air above 673 K to form OTBs with lower alkali metal content, WO3 and Na2W2O7. The phase composition of cubic OTB isostructural to Na0.74WO3, is stable up to 673 K in air and up to 873 K in argon. Conductivity studies of all samples indicate mixed ion-electron conductivity with a predominance of the electronic component. Аt 298–573 K, the specific electrical conductivity values vary within the range of 0.035–0.051, 0.012–0.030 and 0.005–0.019 (Ohm⋅cm)–1 for the OTB samples of tetragonal, cubic and hexagonal structures, respectively.
- Keywords
- поливольфраматные расплавы щелочные вольфрамовые бронзы электроосаждение термостойкость электропроводность
- Date of publication
- 17.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Калиев К.А., Барабошкин А.Н. Электрокристаллизация оксидных бронз переходных металлов из расплавленных солей. В кн.: Оксидные бронзы: сб. науч. тр.; ред. В.И. Спицын. М. Наука, 1982. C. 137–175.
- 2. Вакарин С.В. Ориентированный рост вольфрамовых бронз при электролизе расплавов. Екатеринбург: Ур О РАН, 2005. 108 с.
- 3. Labbe Ph. Tungsten oxides, tungsten bronzes and tungsten bronze-type structures // Key Eng. Mater. 1992. 68. P. 293–339.
- 4. Zheng Z., Yan B., Zhang J., You Y., Lim C. T., Shen Z., Yu T. Potassium Tungsten Bronze Nanowires: Polarized MicroRaman Scattering of Individual Nanowires and Electron Field Emission from Nanowire Films // Adv. Mater. 2008. 20. P. 352–356.
- 5. Vemuri R.S., Carbjal Franco G., Ferrer D.A., Engelhard M.H., Ramana C.V. Physical properties and surface/interface analysis of nanocrystalline WO3 films grown under variable oxygen gas flow rates // Appl. Surf. Sci. 2012. 259. P. 172–177.
- 6. Semerikova O.L., Vakarin S.V., Kosov A.V., Plaksin S.V., Pankratov A.A., Grishenkova O.V., Zaykov Yu.P., Shishmakov A.B., Mikushina Yu.V., Petrov L.А. Electrochemical Synthesis of Nanohybrid Systems Based on Copper and the Oxide Tungsten Bronzes // J. Electrochem. Soc. 2019. 166. P. D792–D797.
- 7. Kosov A.V., Semerikova O.L., Vakarin S.V., Pankratov A.A., Plaksin S.V., Zaykov Yu.P. Electrochemical synthesis of tetragonal oxide tungsten bronze nanofilms on platinum // Russ. Metall. 2017. 2017. P. 152–157.
- 8. Kosov A.V., Semerikova O.L., Vakarin S.V., Zaykova Yu.P. Elektrokhimicheskoye povedeniye sistemy nikel'/oksidnaya vol'framovaya bronza pri tsiklicheskoy razvertke potentsiala // Rasplavy. 2019. № 4. P. 350–359.
- 9. Dickens P.G., Whittingham M.S. The tungsten bronzes and related compounds // Q. Rev. Chem. Soc. 1968. 22. P. 30–44.
- 10. Saito M., Kishi T., Nagai T. Electrochemical Characteristics of Semiconducting NaxWO3 // Denki Kagaku oyobi Kogyo Butsuri Kagaku. 1977. 45. P. 149–153 [In Japanese].
- 11. El-Sayed A.M., Mousa S.M.A. Some properties of sodium tungsten bronzes as a function of sodium concentration // Ind. J. Chem. Technol. 2005. 12. P. 304–308.
- 12. Lekshmi I.C., Hegde M.S. Synthesis and electrical properties of cubic NaxWO3 thin films across the metal–insulator transition // Mater. Res. Bull. 2005. 40. P. 1443–1450.
- 13. Goodenough J.B. Metallic oxides // Progress in Solid State Chemistry. 1971. 5. P. 145–399.
- 14. Tegg L., Haberfehlner G., Kothleitner G., Kisi E., Keast V.J. Crystal structures, electrical properties, and electron energy-loss spectroscopy of the sodium and potassium tetragonal tungsten bronzes // J. Alloys Compd. 2021. 868. P. 159200.
- 15. Гарифьянов Н.Н., Марамзин В.Ю., Халиуллин Г.Г., Гарифуллин И.А. Исследование электронных свойств натрий-вольфрамовых бронз // ЖЭТФ. 1995. 107. С. 556–567.
- 16. Chen R., Gao C., Bu K., Hao X., Wang Z., Wen L., Guo J., Chao M., Liang E., Yang L., Dong C. Charge Density Wave and Crystal Structure of KxWO3 (x = 0.20 and 0.22) Prepared by Hybrid Microwave Method // Low Temp. Phys. 2017. 188. P. 1–10.
- 17. Sano K., Nitta Y., Ōno Y. Transition Temperature of Superconductivity in Sodium Tungsten Bronze - Theoretical Study Based on First-principles Calculations // J. Phys. Soc. Jpn. 2020. 89. P. 113704.
- 18. Lawrence S., Stevenson S., Mavadia K., Sermon P. Solid-State Properties of Some Polycrystalline Alkali-Metal Tungsten Bronzes // Proc. Royal Soc. London. Ser. A: Math. Phys. Sci. 1987. 411. P. 95–121.
- 19. Букун Н.Г., Леонова Л.С. Ионный обмен на границе металл-оксидные бронзы/твердый электролит // ISJAEE. 2009. № 8. С. 38–50.
- 20. Espinosa-Angeles J.C., Quarez E., Mvele Eyé’a L.-B., Douard C., Iadecola A., Shao H., Taberna P.-L., Simon P., Crosnier O., Brousse T. Charge Storage Mechanism of LixWO3 Hexagonal Tungsten Bronze in Aqueous Electrolytes // Batteries 2023. 9. P. 136.
- 21. Azimirad R., Goudarzi M., Akhavan O., Moshfegh A.Z. The effect of heating time on growth of NaxWO3 nanowhiskers // Vacuum. 2008. 82. P. 821–826.
- 22. Павлова С.С. Синтез и свойства высокодисперсных порошков оксидных бронз Ti, Mo, W и материалов на их основе. Дисс. … канд. техн. наук. Ханты-Мансийск, 2019. 146 c.
- 23. Бикбердина Н.Я., Бороненко М.П., Гуляев П.Ю., Юнусов Р.Д. Электрофизические свойства оксидной бронзы NaxWO3 // Вестник Югорского гос. ун-та. 2017. 46. № 3. С. 7–11.
- 24. Дробашева Т.И., Расторопов С.Б. Электрофизические свойства порошков многощелочных оксидных бронз вольфрама // Инж. вестник Дона. 2016. № 2.
- 25. Дробашева Т.И., Расторопов С.Б. Термостойкость кислородных щелочных вольфрамовых и молибденовых бронз // Инж. вестник Дона. 2013. № 1
- 26. Shchelkanova M.S., Shekhtman G.Sh., Pershina S.V., Pankratov A.A., Khodimchuk A.V., Pryakhina V.I. The study of sodium-vanadium oxide NaV3O8 as an electrode material for all-solid-state sodium-ion batteries // J. Alloys Compd. 2021. 864. P. 158516.