RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

STRUCTURE AND THERMAL PROPERTIES OF THE GLASS-FORMING SYSTEM NaO - AlO - PO

PII
10.31857/S0235010625030024-1
DOI
10.31857/S0235010625030024
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
192-204
Abstract
Phosphate glasses can be used as immobilization matrices for radioactive waste. To choose the most suitable compositions for this purpose, it is important to observe data on both the glass structure and physicochemical properties. In the present work, the classical molecular dynamics method was used to evaluate a number of physicochemical properties of NaO - AlO - PO glass with a mass fractions 0.25 - 0.25 - 0.5, respectively, which is considering as a base glass for complex immobilization matrices. The model system was smoothly cooled from the melt at T = 2300 K down to room temperature. During cooling, the temperature dependences of the density and heat capacity were obtained. According to the calculation, the specific heat capacity of the glass at room temperature is 1.17 J/(g*K). The calculated the radial distribution functions and time dependences of the mean squared ion displacements show that the ensemble at room temperature is in a glassy state. A detailed analysis of the local structure, including the statistics of local environments [MeO], was carried out. The glass is shown to contain [PO] tetrahedra combined with [AlO] and [AlO], as well as various sodium groupings. The maxima of the radial distribution functions of P-O, Al-O and Na-O lie at 1.50, 2.02 and 2.45 Å, respectively, which is in good agreement with the reference data on the structure of glasses with similar compositions. In addition, the density of 2.526 g/cm calculated for room temperature is within the range of typical densities of phosphate glasses and matches the experimentally measured value. For the room-temperature glass, the vibrational densities of states are calculated. The characteristic vibrational frequencies of aluminum and phosphorus are in the regions of 450 cm and 1300 cm, respectively, which agree with the experimental Raman spectra semi-quantitatively. To calculate thermal conductivity, nonequilibrium molecular dynamics was used, where the heat flux was simulated in the cell and the temperature gradient was recording. The calculated thermal conductivity and thermal diffusivity are equal to 1.35 W/(m*K) and 4.57*10 m/s, respectively.
Keywords
локальная структура фосфатные стекла классическая молекулярная динамика потенциал Букингема
Date of publication
14.05.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Sengupta P. // J. Hazard. Mater. 2012. 235-236. P. 17-28. https://doi.org/10.1016/j.jhazmat.2012.07.039
  2. 2. Oelkers E.H., Montel J.-M. // Elements. 2008. 4(2). P. 113-116. https://doi.org/10.2113/gselements.4.2.113
  3. 3. Мусатов Н.Д., Кащеев В.А., Тучкова А.И. и др. // Вопр. атом. науки и тех. 2020. № 1 (102). Стр. 66-75.
  4. 4. Власов М.И., Ведерникова Е.Д., Першина С.В. и др. // Стекло и керамика. 2025. 98(1), Стр. 03-16.
  5. 5. Brow R.K. // J. Non-Cryst. Solids. 2000. 263-264. P. 1-28. https://doi.org/10.1016/s0022-3093 (99)00620-1
  6. 6. Zielniok D., Cramer C., Eckert H. // Chem. Mater. 2007. 19. P. 3162-3170. https://doi.org/10.1021/cm0628092
  7. 7. Balyakin I.A., Vlasov M.I., Pershina S.V., Tsymbarenko D.M., Rempel A.A. // Comput. Mater. Sci. 2024. 239. P. 112979. https://doi.org/10.1016/j.commatsci.2024.112979
  8. 8. Muñoz F., Rocherullé J., Ahmed I., Hu L. Springer Handbook of Glass. Springer. 2019. P. 553-594.
  9. 9. Muñoz F., Montagne L., Pascual L., Durán A. // J. Non-Cryst. Solids. 2009. 355. P. 2571-2577. https://doi.org/10.1016/j.jnoncrysol.2009.09.013
  10. 10. Grest G.S., Cohen M.H. // Phys. Rev. B. 1980. 21. P. 4113-4117. https://doi.org/10.1103/physrevb.21.4113
  11. 11. Hoppe U., Walter G., Kranold R., Stachel D. // J. Non-Cryst. Solids. 2000. 263-264. P. 29-47. https://doi.org/10.1016/s0022-3093 (99)00621-3
  12. 12. Liu H., Zhao Z., Zhou Q. et al. // C. r., Géosci. 2022. 354(S1). P. 35-77. https://doi.org/10.5802/crgeos.116
  13. 13. Jahn S. // Rev. Mineral. Geochem. 2022. 87(1). P. 193-227. https://doi.org/10.2138/rmg.2022.87.05
  14. 14. Pedone A // J. Phys. Chem. C. 2009. 113(49). P. 20773-20784. https://doi.org/10.1021/jp9071263
  15. 15. Buckingham R.A. // Proc. R. Soc. Lond. 1938. 168(933). P. 264-283. https://doi.org/10.1098/rspa.1938.0173
  16. 16. Al-Hasni B., Mountjoy G. // J. Non-Cryst. Solids. 2010. 357(15). P. 2775-2779. https://doi.org/10.1016/j.jnoncrysol.2010.10.010
  17. 17. Du J., Cormack A.N. // J. Non-Cryst. Solids. 2004. 349. P. 66-79. https://doi.org/10.1016/j.jnoncrysol.2004.08.264
  18. 18. Lv X., Xu Z., Li J., Chen J., Liu Q. // J. Mol. Liq. 2016. 221. P. 26-32. https://doi.org/10.1016/j.molliq.2016.05.064
  19. 19. Zakiryanov D., Kobelev M., Tkachev N. // Fluid Ph. Equilib. 2019. 506. P. 112369. https://doi.org/10.1016/j.fluid.2019.112369
  20. 20. Thompson A.P., Aktulga H.M., Berger R. et al. // Comput. Phys. Commun. 2021. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
  21. 21. Thomas M., Brehm M., Fligg R., Vöhringer P., Kirchner B. // Phys. Chem. Chem. Phys. 2013. 15(18). P. 6608. https://doi.org/10.1039/c3cp44302g
  22. 22. Chanshetti U.B., Shelke V.A., Jadhav S.M. et al. // FU Phys Chem Technol. 2011. 9(1). P. 29-36. https://doi.org/10.2298/fupct1101029c
  23. 23. Brow R.K. // J. Am. Ceram. Soc. 1993. 76(4). P. 919-928. https://doi.org/10.1111/j.1151-2916.1993.tb05315.x
  24. 24. Alhasni B. // J. Non-Cryst. Solids. 2021. 578. P. 121338. https://doi.org/10.1016/j.jnoncrysol.2021.121338
  25. 25. Shvanskaya L.V., Yakubovich O.V., Belik V.I. // Crystallogr. Rep. 2016. 61. P. 786-795. https://doi.org/10.1134/s1063774516050205
  26. 26. Hoppe U. // J. Non-Cryst. Solids. 1996. 195. P. 138-147. https://doi.org/10.1016/0022-3093 (95)00524-2
  27. 27. Schneider J., Oliveira S.L., Nunes L.A.O., Panepucci H. // J. Am. Ceram. Soc. 2003. 86. P. 317-324. https://doi.org/10.1111/j.1151-2916.2003.tb00017.x
  28. 28. Yadav A.K., Singh P. // RSC Advances. 2015. 5(83). P. 67583-67609. https://doi.org/10.1039/c5ra13043c
  29. 29. Li W., He D., Li S., Chen W., Hu L. // Ceram. Int. 2014. 40(8). P. 13389-13393. https://doi.org/10.1016/j.ceramint.2014.05.056
  30. 30. Hudgens J.J., Brow R.K., Tallant, Martin S.W. // J. Non-Cryst. Solids. 1998. 223(1-2). P. 21-31. https://doi.org/10.1016/s0022-3093 (97)00347-5
  31. 31. Boucher S., Piwowarczyk J., Marzke R.F. et al. // J. Europ. Ceram. Soc. 2005. 25. P. 1333-1340. https://doi.org/10.1016/j.jeurceramsoc.2005.01.016
  32. 32. Goj P., Handke B., Stoch P. // Sci. Rep. 2022. 12. P. 17495. https://doi.org/10.1038/s41598-022-22432-5
  33. 33. Freitas A.M., Bell M.J.V., Anjos V. et al. J. Lumin. 2015. 169. P. 353-358. https://doi.org/10.1016/j.jlumin.2015.08.062
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library