RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

CORROSION OF 10CrNi45Al ALLOY IN AN OXIDIZING GAS ATMOSPHERE

PII
10.31857/S0235010625030052-1
DOI
10.31857/S0235010625030052
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
237-249
Abstract
One of the basic technological operations of the currently developed pyrochemical technology for reprocessing spent nitride nuclear fuel from fast neutron reactors (SNF RBN) is high-temperature treatment (HTT) in a gas environment. The aim of the work was to study the effect of oxygen-containing gas environments: a dry mixture of Ar-20 vol. % O and a mixture of Ar-20 vol. % O, with 60% humidity for the degradation of 10CrNi45Al alloy, a candidate material for the manufacture of the HTT apparatus. Corrosion tests lasting up to 1000 hours were carried out at 500C. It was established by the X-ray diffraction method that the main corrosion products formed on the surface of samples kept in a dry gas atmosphere are AlO, FeO and NiFeO. The presence of moisture in the gas environment contributes to the formation of NiO and NiСrO. In a dry gas mixture, an outer layer is observed on the surface of the sample, which is individual fragments of corrosion products: oxide compounds of iron, chromium, nickel. The surface of the material is covered with a continuous film with a thickness of 2 to 5 μm based on aluminum oxide. For samples tested in a wet gas mixture, a violation of the continuity of the internal protective layer was revealed. The outer loosened layer consists of iron oxides, under which a layer with a predominant content of oxygen-containing chromium compounds was revealed.
Keywords
высокотемпературная обработка коррозия 10ХН45Ю переработка ОЯТ окислительная газовая атмосфера H2O
Date of publication
15.05.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Потапов А.М., Мазанников М.В., Зайков Ю.П. Первые стадии переработки нитридного отработавшего ядерного топлива // Физическая химия и электрохимия расплавленных и твердых электролитов: сборник материалов ХIX Российской конференции. Екатеринбург: Издательский Дом «Ажур». 2023. С. 123-126.
  2. 2. Карфидов Э.А., Никитина Е.В., Мазанников М.В., Потапов А.М., Дедюхин А.Е. Коррозия стали ЭП-823 (16Х12МВСФБР) в условиях высокотемпературной обработки ОЯТ // Расплавы. 2024. № 6. С. 581-595.
  3. 3. Семенова И.В., Флорианович Г.М., Хорошилов А.В. Коррозия и защита от коррозии. М.: Физматлит. 2002.
  4. 4. Сокол И.Я., Ульянин Е.А., Фельдгандлер Э.Г. и др. Структура и коррозия металлов и сплавов. Атлас: Справочное издание. М.: Металлургия, 1989.
  5. 5. Yadav P., Abro M. A., Lee D.B., Yoon J. High-temperature corrosion of pure Ni3Al and its alloyed (2.99 wt.%Ti) in Ar-0.2%SO2 gas environment // Journal of Materials Research and Technology. 2022. 17. P. 3055-3065.
  6. 6. Kai W., Lee S.H., Chiang D.L., Chu J.P. The high-temperature corrosion of Fe-28Al and Fe-18Al-10Nb in a H2/H2S/H2O gas mixture // Materials Science and Engineering. 1998. 258. P. 146-152.
  7. 7. Kai W., Huang Y-J., Hsu Y-C., Huang R-T., Zhou Y., Kai J-J. The corrosion of FeCoNiAl-based medium- and high-entropy alloys in various ratios of CO2/CO gas mixture // Intermetallics. 2024. 173. P. 108-431.
  8. 8. Yu C., Zhang J., Young D. J. High temperature corrosion of Fe-Cr-(Mn/Si) alloys in CO2-H2O-SO2 gases // Corrosion Science. 2016. 112. P. 214-225.
  9. 9. Shi S., Xu X., Lin X., Zhao W., Zhang Y., Hua Y., Su C., Sun C., Sun J. The temperature impact on the corrosion behavior of nickel-based alloy in a H2O-CO2-H2S-H2 mixed gas during in-situ conversion of shale oil // Corrosion Science. 2025. 245. P. 112-713.
  10. 10. Пойлов В.З., Казанцев А.Л., Сковородников П.В., Саулин Д.В., Углев Н.П., Пузанов А.И. Высокотемпературная газовая коррозия никелевого сплава // Материаловедение. 2021. № 3. С. 42-46.
  11. 11. Бахирев С.О., Дацько А.И., Носач А.Ю., Бычков Д.В. Исследование влияния состава сплавов на скорость газовой коррозии // Проблемы науки. 2017. № 11 (24). С. 25-32.
  12. 12. Saunders S.R.J., Monteiro M., Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review // Progress in Materials Science. 2008. 53. P. 775-837.
  13. 13. Henry S., Mougin J., Wouters Y., Petit J-P., Galerie A. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres // Materials at High Temperatures. 2000. 17. P. 231-234.
  14. 14. Hultquist G., Tveten B., HoЁrnlund E. Hydrogen in chromium: influence on the high-temperature oxidation kinetics in H2O, oxide-growth mechanisms, and scale adherence // Oxidation of Metals. 2000. 54. P. 1-10.
  15. 15. Ehlers J., Young D.J., Smaardijk E.J., Tyagi A.K., Penkalla H.J., Singheiser L. et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments // Corrosion Science. 2006. 48. P. 3428-3454.
  16. 16. Schutze M., Renusch D., Schorr M. Chemical-mechanical failure of oxide scales on 9% Cr steels in air with H2O // Materials at High Temperatures. 2005. 22. P. 113-120.
  17. 17. Galerie A., Henry S., Wouters Y., Mermoux M., Petit J-P., Antoni L. Mechanisms of chromia scale failure during the course of 15-18Cr ferritic stainless steel oxidation in water vapour // Materials at High Temperatures. 2005. 22. P. 105-12.
  18. 18. Zґurek J., Michalik M., Schmitz F., Kern T-U., Singheiser L., Quadakkers W.J. The effect of water-vapor content and gas flow rate on the oxidation mechanism of a 10%Cr-ferritic steel in Ar-H2O mixtures // Oxidation of Metals. 2005. 63. P. 401-422.
  19. 19. Cheng S-Y., Kuan S-L., Tsai W-T. Effect of water vapor on annealing scale formation on 316 SS // Corrosion Science. 2006. 48. P. 634-649.
  20. 20. Peng X., Yan J., Zhou Y., Wang F. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air // Acta materialia. 2005. 53. P. 5079-5088.
  21. 21. Shen J., Zhou L., Li T. High-temperature oxidation of Fe-Cr alloys in wet oxygen // Oxidation of Metals. 1997. 48. P. 347-356.
  22. 22. Ehlers J., Young D.J., Smaardijk E.J., Tyagi A.K., Penkalla H.J., Singheiser L. et al. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments // Corrosion Science. 2006. 48. P. 3428-3454.
  23. 23. Rahmel A. Einfluss von Wasserdampf und Kohlendioxyd auf die Oxydation von Nickel in Sauerstoff bei Hohen Temperaturen // Corrosion Science. 1965. 5. P. 815-820.
  24. 24. Hussain N., Qureshi A.H., Shahid K.A., Chughtai N.A., Khalid F.A. High-temperature oxidation behavior of HASTELLOY C-4 in steam // Oxidation of Metals. 2004. 61. P. 355-364.
  25. 25. Hussain N., Shahid K.A., Khan I.H., Rahman S. Oxidation of high temperature alloys (superalloys) at elevated temperatures in air: 1 // Oxidation of Metals. 1994. 41. P. 251-270.
  26. 26. Holcomb G.R., Alman D.E. The effect of manganese additions on the reactive evaporation of chromium in Ni-Cr alloys // Scripta materialia. 2006. 54. Р. 1821-1825.
  27. 27. Zhou C., Yu J., Gong S., Xu H. Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature // Surface and Coatings Technology. 2002. 161. P. 86-91.
  28. 28. Poquillon D., Monceau D. Application of a Simple Statistical Spalling Model for the Analysis of High-Temperature // Cyclic-Oxidation Kinetics Data. 2003. 59. P. 409-431.
  29. 29. Vialas N., Monceau D., Pieraggi B. Effect of Cycle Frequency on High Temperature Oxidation Behavior of Alumina-forming Coatings Used for Industrial Gas Turbine Blades // Materials Science Forum. 2004. 461. 464. P. 747-754.
  30. 30. Yuan J., Wu X., Wang W., Zhu S., Wang F. Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam // Materials. 2014. 7. P. 2772-2783.
  31. 31. ГОСТ 5632-2014. Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. М.: Стандартинформ, 2015.
  32. 32. ГОСТ 9.305-84. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Операции технологических процессов получения покрытий. М: Стандартинформ, 1985.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library