RAS Chemistry & Material ScienceРасплавы Melts

  • ISSN (Print) 0235-0106
  • ISSN (Online) 3034-5715

THE INFLUENCE OF THE OXIDATION-REDUCTION POTENTIAL OF THE ENVIRONMENT ON THE CORROSION OF 12Cr18Ni10Ti STEEL IN THE MELT (LiCl-KCl)-UCl/UCl

PII
10.31857/S0235010625030065-1
DOI
10.31857/S0235010625030065
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
250-260
Abstract
Currently, high-temperature technology for processing spent nuclear fuel using molten salts is being actively developed. One of the key stages of this technology is electro-refining using a salt composition based on LiCl-KCl as an electrolyte. High operating temperatures and changes in the composition of salt electrolytes as a result of ongoing technological processes cause increased aggressiveness of the melt with respect to structural materials. The work investigated the effect of changing the oxidation-reduction potential of the medium, set by introducing uranium chlorides into the salt electrolyte (the proportion of trivalent uranium chlorides in the additive 2 wt.% UCl/UCl from 5 to 95%) on the corrosion characteristics of 12Cr18Ni10Ti stainless steel in a melt of lithium and potassium chlorides. Corrosion tests lasting 100 hours were carried out at a temperature of 550°C in an inert gas environment of argon with a water content of less than 0.1 ppm and oxygen content of less than 10 ppm. The oxidation-reduction potential of the environment was determined both relative to the chlorine and relative to the lithium dynamic reference electrode (Li/Li). With the predominant introduction of UCl into the melt, a decrease in the corrosion rate is observed (up to 0.005 g/(m•h)). In the same time with the introduction of the tetravalent form of uranium chloride a significant increase in the corrosion rate of 12Cr18Ni10Ti steel (up to 0.703 g/(m•h)) relative to the corrosion rates obtained as a result of corrosion tests in the eutectic melt of LiCl-KCl without additives (0.062 g/(m•h)). With an experimentally measured value of the ORP of the melt (LiCl-KCl)-UCl/UCl (relative to the lithium dynamic reference electrode) from 1.78 to 2.08 V, the corrosion rate of 12Cr18Ni10Ti steel is lower than the value of the corrosion rate of this steel in the eutectic melt of lithium and potassium chlorides.
Keywords
LiCl-KCl 12Х18Н10Т высокотемпературная коррозия хлориды урана (+3, +4) окислительно-восстановительный потенциал среды переработка ОЯТ РБН
Date of publication
15.05.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Никитина Е.В., О.Ю. Ткачева, Э.А. Карфидов, А.В. Руденко, Муллабаев А.Р. Высокотемпературная коррозия в расплавленных солях: учебное пособие / под общ. ред. Е.В. Никитиной. Министерство науки и высшего образования Российской Федерации, Уральский федеральный университет. Екатеринбург: Изд-во Урал. Ин-та. 2021.
  2. 2. LeBlanc D. Molten salt reactors: a new beginning for an old idea / D. LeBlanc // Nuclear Engineering and Design. 2010. 204. P.1644-1656.
  3. 3. Кочергин В.П. Защита металлов от коррозии в ионных расплавах и растворах электролитов / В.П. Кочергин. Екатеринбург: Изд-во УрГУ. 1991.
  4. 4. Смирнов М.В., Озеряная И.Н. Коррозия металлов в расплавленных солевых средах и защита от коррозии. // Коррозия и защита от коррозии. Итоги науки М.: ВИНИТИ. 1973. 2. С. 171-209.
  5. 5. Guo S., Zhang J., Wu W., Zhou W. Corrosion in the molten fuoride and chloride salts and materials development for nuclear applications // Prog. Mater. Sci. 2018. 97. 448-487.
  6. 6. Yingling J.A., Aziziha M., Schorne-Pinto J., Palma J.P.S., Ard J.C., Booth R.E., Dixon C.M., Besmann T.M. Thermodynamic Assessment of CrCl2 with NaCl-KCl-MgCl2-UCl3-UCl4 for Molten Chloride Reactor Corrosion Modeling // ACS Appl Energy Mater. 2023. 6. №11. P. 5868-5882
  7. 7. Gomez-Vidal J.C., Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies // Sol. Energy Mater. Sol. Cells. 2016. 157. P.234-244.
  8. 8. Lu P., Liu Q., Bao H., Pan T.J., Tang Z. Effect of FeCl3 in NaClMgCl2 molten salts on the corrosion behavior of 316 stainless steel at 600°C // Corros. Sci. 2023. 212. 110961.
  9. 9. Ding W., Bonk A., Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review // Front. Chem. Sci. Eng. 2018. 12. P.564-576.
  10. 10. Kurley J.M., Halstenberg P.W., McAlister A., Raiman S., Dai S., Mayes R.T. Enabling chloride salts for thermal energy storage: Implications of salt purity // RSC Adv. 2019. 9. 25602-25608.
  11. 11. Nguyen T.D., van Rooijen W.F.G. Design of reactor physics experiments in support of chloride-fueled Molten Salt Reactor research & development. Ann. Nucl. Energy. 2023.
  12. 12. van Oudenaren G.I.L., Ocadiz-Flores J.A., Smith A.L. Coupled structural-thermodynamic modelling of the molten salt system NaCl-UCl3. J. Mol. Liq. 2021.
  13. 13. Li B., Dai S., Jiang D.-e. Molecular dynamics simulations of structural and transport properties of molten NaCl-UCl3 using the polarizable-ion model. J. Mol. Liq. 2020. 299. 112184.
  14. 14. Sano Y., Ambai H., Takeuchi M., Iijima S., Uchida N. Efect of chloride ion on corrosion behavior of SUS316L-grade stainless steel in nitric acid solutions containing seawater components under γ-ray irradiation // J. Nucl. Mater. 2017. 493. P.200-206.
  15. 15. Sooby E.S., Nelson A.T., White J.T., McIntyre P.M. Measurements of the liquidus surface and solidus transitions of the NaClUCl3 and NaCl-UCl3-CeCl3 phase diagrams // J. Nucl. Mater. 2015. 466. P.280-285.
  16. 16. Zhang H., Choi S., Zhang C., Faulkner E., Alnajjar N., Okabe P., Horvath D.C., Simpson M.F., Square wave voltammetry for real time analysis of minor metal ion concentrations in molten salt reactor fuel // J Nuclear Mater. 2019.
  17. 17. Zhang H., Choi S., Hamilton D.E., Simpson M.F. Electroanalytical Measurements of UCl3 and CeCl3 in Molten NaCl-CaCl2 // J. Electrochem. Soc. 2021. 168. 056521.
  18. 18. D’Souza B., Zhuo W., Yang Q., Leong A., Zhang J. Impurity driven corrosion behavior of HAYNES 230 alloy in molten chloride Salt. Corros. Sci. 2021. 109483.
  19. 19. Ding W., Shi H., Xiu Y., Bonk A., Weisenburger A., Jianu A., Bauer T. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Sol. Energy Mater. Sol. Cells. 2018. 184. P.22-30.
  20. 20. Pint B.A., Su Y.F., Sulejmanovic D., Pillai R. Characterization of Fe and Cr Dissolution and Reaction Product Formation in Molten Chloride Salts With and Without Impurities. Mater. High Temp. 2023. 2205754.
  21. 21. Смирнов, М.В. Особенности коррозии металлов в расплавленных галогенидах и карбонатах / М.В. Смирнов, И.Н. Озеряная // Высокотемпературная коррозия и методы защиты от неё. 1973. № 1. С. 76-83.
  22. 22. Колотырки, Я.М. Электрохимические аспекты коррозии металлов. Питтинговая коррозия металлов / Я.М. Колотыркин // Защита металлов. 1975. 11. №6. С. 675-686.
  23. 23. Ambrosek J. Molten chloride salts for heat transfer in nuclear systems / J. Ambrosek // University of Wisconsin. 2011.
  24. 24. Raiman S.S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts / S.S. Raiman, S. Lee // Journal of Nuclear Materials. 2018. 511. P. 523-535.
  25. 25. Indacochea J.E. Corrosion Performance of Ferrous and Refractory Metals in Molten Salts under Reducing Conditions / J.E. Indacochea, J.L. Smith, K.R. Litko, E.J. Karell // Journal of Materials Research. 1999. 14. № 5. P. 1990-1995.
  26. 26. Nikolaev A.Y. Purification of Alkali-Metal Chlorides by Zone Recrystallization for Use in Pyrochemical Processing of Spent Nuclear Fuel / A.Y. Nikolaev, A.R. Mullabaev, A.V. Suzdaltsev et al. // At Energy. 2022. 131. C. 195-201.
  27. 27. Romanova D.O., Mullabaev A.R., Kovrov V.A. et. al. Determination of the Valent Forms of Uranium (III) and Uranium (IV) Present in the Chloride Melts of Alkaline Metals / // Russian Metallurgy (Metally). 2023. 2023. № 2. P. 248-256.
  28. 28. Карфидов Э.А., Никитина Е.В., Селиверстов К.Е., Мушников П.Н., Каримов К.Р. Коррозионное поведение стали 12Х18Н10Т в расплаве LiCl-KCl, содержащем добавки хлоридов f-элементов // Расплавы. 2023. № 4. С. 1-8.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library